177 research outputs found

    Blocking behaviors of crosstalk-free optical Banyan networks on vertical stacking

    Get PDF
    Banyan networks are attractive for constructing directional coupler (DC)-based optical switching networks for their small depth and self-routing capability. Crosstalk between optical signals passing through the same DC is an intrinsic drawback in DC-based optical networks. Vertical stacking of multiple copies of an optical banyan network is a novel scheme for building nonblocking (crosstalk-free) optical switching networks. The resulting network, namely vertically stacked optical banyan (VSOB) network, preserves all the properties of the banyan network, but increases the hardware cost significantly. Though much work has been done for determining the minimum number of stacked copies (planes) required for a nonblocking VSOB network, little is known on analyzing the blocking probabilities of VSOB networks that do not meet the nonblocking condition (i.e., with fewer stacked copies than required by the nonblocking condition). In this paper, we analyze the blocking probabilities of VSOB networks and develop their upper and lower bounds with respect to the number of planes in the networks. These bounds depict accurately the overall blocking behaviors of VSOB networks and agree with the conditions of strictly nonblocking and rearrangeably nonblocking VSOB networks respectively. Extensive simulation on a network simulator with both random routing and packing strategy has shown that the blocking probabilities of both strategies fall nicely within our bounds, and the blocking probability of packing strategy actually matches the lower bound. The proposed bounds are significant because they reveal the inherent relationships between blocking probability and network hardware cost in terms of the number of planes, and provide network developers a quantitative guidance to trade blocking probability for hardware cost. In particular, our bounds provide network designers an effective tool to estimate the minimum and maximum blocking probabilities of VSOB networks in which different routing strategies may be applied. An interesting conclusion drawn from our work that has practical applications is that the hardware cost of a VSOB network can be reduced dramatically if a predictable and almost negligible nonzero blocking probability is allowed.Xiaohong Jiang; Hong Shen; Khandker, Md.M.-ur-R.; Horiguchi, S

    Terabit Burst Switching Final Report

    Get PDF
    This is the final report For Washington University\u27s Terabit Burst Switching Project, supported by DARPA and Rome Air Force Laboratory. The primary objective of the project has been to demonstrate the feasibility of Burst Switching, a new data communication service, which seeks to more effectively exploit the large bandwidths becoming available in WDM transmission systems. Burst switching systems dynamically assign data bursts to channels in optical datalinks, using routing information carried in parallel control channels

    Automated routing and control of silicon photonic switch fabrics

    Get PDF
    Automatic reconfiguration and feedback controlled routing is demonstrated in an 8×8 silicon photonic switch fabric based on Mach-Zehnder interferometers. The use of non-invasive Contactless Integrated Photonic Probes (CLIPPs) enables real-time monitoring of the state of each switching element individually. Local monitoring provides direct information on the routing path, allowing an easy sequential tuning and feedback controlled stabilization of the individual switching elements, thus making the switch fabric robust against thermal crosstalk, even in the absence of a cooling system for the silicon chip. Up to 24 CLIPPs are interrogated by a multichannel integrated ASIC wire-bonded to the photonic chip. Optical routing is demonstrated on simultaneous WDM input signals that are labelled directly on-chip by suitable pilot tones without affecting the quality of the signals. Neither preliminary circuit calibration nor lookup tables are required, being the proposed control scheme inherently insensible to channels power fluctuations

    The Strict-Sense Nonblocking Multirate l

    Get PDF
    This paper considers the nonblocking conditions for a multirate logd(N,0,p) switching network at the connection level. The necessary and sufficient conditions for the discrete bandwidth model, as well as sufficient and, in particular cases, also necessary conditions for the continuous bandwidth model, were given. The results given for dn-1/2f0≥f1+1 in the discrete bandwidth model are the same as those proposed by Hwang et al. (2005); however, in this paper, these results were extended to other values of f0, f1, and d. In the continuous bandwidth model for B+b>1, the results given in this paper are also the same as those by Hwang et al. (2005); however, for B+b≤1, it was proved that a smaller number of vertically stacked logdN switching networks are needed
    • …
    corecore