19,149 research outputs found

    Oriented tensor reconstruction: tracing neural pathways from diffusion tensor MRI

    Get PDF
    In this paper we develop a new technique for tracing anatomical fibers from 3D tensor fields. The technique extracts salient tensor features using a local regularization technique that allows the algorithm to cross noisy regions and bridge gaps in the data. We applied the method to human brain DT-MRI data and recovered identifiable anatomical structures that correspond to the white matter brain-fiber pathways. The images in this paper are derived from a dataset having 121x88x60 resolution. We were able to recover fibers with less than the voxel size resolution by applying the regularization technique, i.e., using a priori assumptions about fiber smoothness. The regularization procedure is done through a moving least squares filter directly incorporated in the tracing algorithm

    A Phase Field Model for Continuous Clustering on Vector Fields

    Get PDF
    A new method for the simplification of flow fields is presented. It is based on continuous clustering. A well-known physical clustering model, the Cahn Hilliard model, which describes phase separation, is modified to reflect the properties of the data to be visualized. Clusters are defined implicitly as connected components of the positivity set of a density function. An evolution equation for this function is obtained as a suitable gradient flow of an underlying anisotropic energy functional. Here, time serves as the scale parameter. The evolution is characterized by a successive coarsening of patterns-the actual clustering-during which the underlying simulation data specifies preferable pattern boundaries. We introduce specific physical quantities in the simulation to control the shape, orientation and distribution of the clusters as a function of the underlying flow field. In addition, the model is expanded, involving elastic effects. In the early stages of the evolution shear layer type representation of the flow field can thereby be generated, whereas, for later stages, the distribution of clusters can be influenced. Furthermore, we incorporate upwind ideas to give the clusters an oriented drop-shaped appearance. Here, we discuss the applicability of this new type of approach mainly for flow fields, where the cluster energy penalizes cross streamline boundaries. However, the method also carries provisions for other fields as well. The clusters can be displayed directly as a flow texture. Alternatively, the clusters can be visualized by iconic representations, which are positioned by using a skeletonization algorithm.

    Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey

    Full text link
    This paper provides a tutorial and survey for a specific kind of illustrative visualization technique: feature lines. We examine different feature line methods. For this, we provide the differential geometry behind these concepts and adapt this mathematical field to the discrete differential geometry. All discrete differential geometry terms are explained for triangulated surface meshes. These utilities serve as basis for the feature line methods. We provide the reader with all knowledge to re-implement every feature line method. Furthermore, we summarize the methods and suggest a guideline for which kind of surface which feature line algorithm is best suited. Our work is motivated by, but not restricted to, medical and biological surface models.Comment: 33 page
    • 

    corecore