371 research outputs found

    A new approach to the parameterization method for Lagrangian tori of hamiltonian systems

    Get PDF
    We compute invariant Lagrangian tori of analytic Hamiltonian systems by the parameterization method. Under Kolmogorov’s non-degeneracy condition, we look for an invariant torus of the system carrying quasi-periodic motion with fixed frequencies. Our approach consists in replacing the invariance equation of the parameterization of the torus by three conditions which are altogether equivalent to invariance. We construct a quasi-Newton method by solving, approximately, the linearization of the functional equations defined by these three conditions around an approximate solution. Instead of dealing with the invariance error as a single source of error, we consider three different errors that take account of the Lagrangian character of the torus and the preservation of both energy and frequency. The condition of convergence reflects at which level contributes each of these errors to the total error of the parameterization. We do not require the system to be nearly integrable or to be written in action-angle variables. For nearly integrable Hamiltonians, the Lebesgue measure of the holes between invariant tori predicted by this parameterization result is of O(e1/2)O(e1/2) , where ee is the size of the perturbation. This estimate coincides with the one provided by the KAM theorem.Peer ReviewedPostprint (author's final draft

    A parameterization method for Lagrangian tori of exact symplectic maps of R2r

    Get PDF
    We are concerned with analytic exact symplectic maps of R2r{\mathbb R}^{2r} endowed with the standard symplectic form. We study the existence of a real analytic torus of dimension rr, invariant by the map and carrying quasi-periodic motion with a prefixed Diophantine rotation vector. Therefore, this torus is a Lagrangian manifold. We address the problem by the parameterization method in KAM theory. The main aspect of our approach is that we do not look for the parameterization of the torus as a solution of the corresponding invariance equation. Instead, we consider a set of three equations that, all together, are equivalent to the invariance equation. These equations arise from the geometric and dynamical properties of the map and the torus. Suppose that an approximate solution of these equations is known and that a suitable nondegeneracy (twist) condition is satisfied. Then, this system of equations is solved by a quasi-Newton-like method, provided that the initial error is sufficiently small. By “quasi-Newton-like” we mean that the convergence is almost quadratic but that at each iteration we have to solve a nonlinear equation. Although it is straightforward to build a quasi-Newton method for the selected set of equations, proceeding in this way we improve the convergence condition. The selected definition of error reflects the level at which the error associated with each of these three equations contributes to the total error. The map is not required to be close to integrable or expressed in action-angle variables. Suppose the map is ε\varepsilon-close to an integrable one, and consider the portion of the phase space not filled up by Lagrangian invariant tori of the map. Then, the upper bound for the Lebesgue measure of this set that we may predict from the result is of O(ε1/2){\mathcal O}(\varepsilon^{1/2}). In light of the classical KAM theory for exact symplectic maps, an upper bound of O(ε1/2){\mathcal O}(\varepsilon^{1/2}) for this measure is the expected estimate. The result also has some implications for finitely differentiable mapsPeer ReviewedPostprint (author's final draft

    Domains of analyticity of Lindstedt expansions of KAM tori in dissipative perturbations of Hamiltonian systems

    Full text link
    Many problems in Physics are described by dynamical systems that are conformally symplectic (e.g., mechanical systems with a friction proportional to the velocity, variational problems with a small discount or thermostated systems). Conformally symplectic systems are characterized by the property that they transform a symplectic form into a multiple of itself. The limit of small dissipation, which is the object of the present study, is particularly interesting. We provide all details for maps, but we present also the modifications needed to obtain a direct proof for the case of differential equations. We consider a family of conformally symplectic maps fμ,ϵf_{\mu, \epsilon} defined on a 2d2d-dimensional symplectic manifold M\mathcal M with exact symplectic form Ω\Omega; we assume that fμ,ϵf_{\mu,\epsilon} satisfies fμ,ϵΩ=λ(ϵ)Ωf_{\mu,\epsilon}^*\Omega=\lambda(\epsilon) \Omega. We assume that the family depends on a dd-dimensional parameter μ\mu (called drift) and also on a small scalar parameter ϵ\epsilon. Furthermore, we assume that the conformal factor λ\lambda depends on ϵ\epsilon, in such a way that for ϵ=0\epsilon=0 we have λ(0)=1\lambda(0)=1 (the symplectic case). We study the domains of analyticity in ϵ\epsilon near ϵ=0\epsilon=0 of perturbative expansions (Lindstedt series) of the parameterization of the quasi--periodic orbits of frequency ω\omega (assumed to be Diophantine) and of the parameter μ\mu. Notice that this is a singular perturbation, since any friction (no matter how small) reduces the set of quasi-periodic solutions in the system. We prove that the Lindstedt series are analytic in a domain in the complex ϵ\epsilon plane, which is obtained by taking from a ball centered at zero a sequence of smaller balls with center along smooth lines going through the origin. The radii of the excluded balls decrease faster than any power of the distance of the center to the origin

    Tracing KAM tori in presymplectic dynamical systems

    Full text link
    We present a KAM theorem for presymplectic dynamical systems. The theorem has a " a posteriori " format. We show that given a Diophantine frequency ω\omega and a family of presymplectic mappings, if we find an embedded torus which is approximately invariant with rotation ω\omega such that the torus and the family of mappings satisfy some explicit non-degeneracy condition, then we can find an embedded torus and a value of the parameter close to to the original ones so that the torus is invariant under the map associated to the value of the parameter. Furthermore, we show that the dimension of the parameter space is reduced if we assume that the systems are exact.Comment: 33 pages and one figur

    Rigorous computer assisted application of KAM theory: a modern approach

    Full text link
    Abstract In this paper, we present and illustrate a general methodology to apply KAM theory in particular problems, based on an a posteriori approach. We focus on the existence of real analytic quasi-periodic Lagrangian invariant tori for symplectic maps. The purpose is to verify the hypotheses of a KAM theorem in an a posteriori format: Given a parameterization of an approximately invariant torus, we have to check non-resonance (Diophantine) conditions, non-degeneracy conditions and certain inequalities to hold. To check such inequalities, we require to control the analytic norm of some functions that depend on the map, the ambient structure and the parameterization. To this end, we propose an efficient computer-assisted methodology, using fast Fourier transform, having the same asymptotic cost of using the parameterization method for obtaining numerical approximations of invariant tori. We illustrate our methodology by proving the existence of invariant curves for the standard map (up to ε=0.9716\varepsilon=0.9716 ), meandering curves for the non-twist standard map and 2-dimensional tori for the Froeschlé map
    corecore