11,581 research outputs found

    Boolean Dynamics with Random Couplings

    Full text link
    This paper reviews a class of generic dissipative dynamical systems called N-K models. In these models, the dynamics of N elements, defined as Boolean variables, develop step by step, clocked by a discrete time variable. Each of the N Boolean elements at a given time is given a value which depends upon K elements in the previous time step. We review the work of many authors on the behavior of the models, looking particularly at the structure and lengths of their cycles, the sizes of their basins of attraction, and the flow of information through the systems. In the limit of infinite N, there is a phase transition between a chaotic and an ordered phase, with a critical phase in between. We argue that the behavior of this system depends significantly on the topology of the network connections. If the elements are placed upon a lattice with dimension d, the system shows correlations related to the standard percolation or directed percolation phase transition on such a lattice. On the other hand, a very different behavior is seen in the Kauffman net in which all spins are equally likely to be coupled to a given spin. In this situation, coupling loops are mostly suppressed, and the behavior of the system is much more like that of a mean field theory. We also describe possible applications of the models to, for example, genetic networks, cell differentiation, evolution, democracy in social systems and neural networks.Comment: 69 pages, 16 figures, Submitted to Springer Applied Mathematical Sciences Serie

    Automatic Network Fingerprinting through Single-Node Motifs

    Get PDF
    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs---a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks.Comment: 16 pages (4 figures) plus supporting information 8 pages (5 figures

    Self-avoiding walks and connective constants in small-world networks

    Full text link
    Long-distance characteristics of small-world networks have been studied by means of self-avoiding walks (SAW's). We consider networks generated by rewiring links in one- and two-dimensional regular lattices. The number of SAW's unu_n was obtained from numerical simulations as a function of the number of steps nn on the considered networks. The so-called connective constant, μ=lim⁡n→∞un/un−1\mu = \lim_{n \to \infty} u_n/u_{n-1}, which characterizes the long-distance behavior of the walks, increases continuously with disorder strength (or rewiring probability, pp). For small pp, one has a linear relation μ=μ0+ap\mu = \mu_0 + a p, μ0\mu_0 and aa being constants dependent on the underlying lattice. Close to p=1p = 1 one finds the behavior expected for random graphs. An analytical approach is given to account for the results derived from numerical simulations. Both methods yield results agreeing with each other for small pp, and differ for pp close to 1, because of the different connectivity distributions resulting in both cases.Comment: 7 pages, 5 figure

    Long range action in networks of chaotic elements

    Full text link
    We show that under certain simple assumptions on the topology (structure) of networks of strongly interacting chaotic elements a phenomenon of long range action takes place, namely that the asymptotic (as time goes to infinity) dynamics of an arbitrary large network is completely determined by its boundary conditions. This phenomenon takes place under very mild and robust assumptions on local dynamics with short range interactions. However, we show that it is unstable with respect to arbitrarily weak local random perturbations.Comment: 15 page

    Griffiths phases and localization in hierarchical modular networks

    Get PDF
    We study variants of hierarchical modular network models suggested by Kaiser and Hilgetag [Frontiers in Neuroinformatics, 4 (2010) 8] to model functional brain connectivity, using extensive simulations and quenched mean-field theory (QMF), focusing on structures with a connection probability that decays exponentially with the level index. Such networks can be embedded in two-dimensional Euclidean space. We explore the dynamic behavior of the contact process (CP) and threshold models on networks of this kind, including hierarchical trees. While in the small-world networks originally proposed to model brain connectivity, the topological heterogeneities are not strong enough to induce deviations from mean-field behavior, we show that a Griffiths phase can emerge under reduced connection probabilities, approaching the percolation threshold. In this case the topological dimension of the networks is finite, and extended regions of bursty, power-law dynamics are observed. Localization in the steady state is also shown via QMF. We investigate the effects of link asymmetry and coupling disorder, and show that localization can occur even in small-world networks with high connectivity in case of link disorder.Comment: 18 pages, 20 figures, accepted version in Scientific Report

    The Physics of Living Neural Networks

    Full text link
    Improvements in technique in conjunction with an evolution of the theoretical and conceptual approach to neuronal networks provide a new perspective on living neurons in culture. Organization and connectivity are being measured quantitatively along with other physical quantities such as information, and are being related to function. In this review we first discuss some of these advances, which enable elucidation of structural aspects. We then discuss two recent experimental models that yield some conceptual simplicity. A one-dimensional network enables precise quantitative comparison to analytic models, for example of propagation and information transport. A two-dimensional percolating network gives quantitative information on connectivity of cultured neurons. The physical quantities that emerge as essential characteristics of the network in vitro are propagation speeds, synaptic transmission, information creation and capacity. Potential application to neuronal devices is discussed.Comment: PACS: 87.18.Sn, 87.19.La, 87.80.-y, 87.80.Xa, 64.60.Ak Keywords: complex systems, neuroscience, neural networks, transport of information, neural connectivity, percolation http://www.weizmann.ac.il/complex/tlusty/papers/PhysRep2007.pdf http://www.weizmann.ac.il/complex/EMoses/pdf/PhysRep-448-56.pd

    Recent advances and open challenges in percolation

    Full text link
    Percolation is the paradigm for random connectivity and has been one of the most applied statistical models. With simple geometrical rules a transition is obtained which is related to magnetic models. This transition is, in all dimensions, one of the most robust continuous transitions known. We present a very brief overview of more than 60 years of work in this area and discuss several open questions for a variety of models, including classical, explosive, invasion, bootstrap, and correlated percolation
    • …
    corecore