2,851 research outputs found

    Implementación de tecnologías RFID e IoT inalámbricas en el Modelado de información de construcción (BIM)

    Get PDF
    ABSTRACT: The integration and installation of innovative Radio Frequency Identification (RFID) technologies in combination with wireless Internet of Things (IoT) technologies in Building Information Modelling (BIM), assigned building elements, can create connectivity between the physical- and the virtual world. Beyond the identification of physical objects, further information can be connected, which can be made available to different user groups during the entire life cycle of the building structure. This provides a high level of transparency, in that by scanning the tagged building elements, complete associated information can be accessed and presented to users via applications, in visual and audio form. One use of an RFID and BIM-supported electronic guidance system, namely for the visually impaired, has already been investigated in my bachelor thesis at the University of Applied Sciences (Technische Hochschule Mittelhessen, THM). This Master’s Thesis focuses on the implementation of passive RFID technology into BIM models in combining them with open-source software applications. BIM represents the digital twin of building models in the digital world and can be linked to physical structures (buildings, roads, sewer systems and such others) and building materials (e.g. textiles, mineral and plastic floor coverings, concrete components) by integrating RFID tags. Connecting the parametric BIM models with the physical building elements by using RFID and wireless IoT technologies in a multi-platform application enables the BIM building models to be actively used throughout the life cycle of a building, not only by the facility management, but also by the public for various use cases. During the literature review, suitable software and hardware components were selected, and a prototype multi-platform application for a navigation and positioning system was developed as proof of concept for the Industry Foundation Classes (IFC) file. (See Demo Version at https://opennavibim.herokuapp.com/ ). The challenge was to read the RFID tags in different installation scenarios. Depending on the installation situations (under, over or in the material), various requirements were specified for RFID tags and readers (RFID, handhold personal digital assistant “PDA”). In this field, further hardware developments are necessary.RESUMEN: Mediante la integración e instalación de la innovadora tecnología de identificación por radiofrecuencia (RFID, Radio Frequency Identification) en el modelado digital de información de construcción (BIM, Building Information Modelling), con la interconexión inalámbrica del internet de las cosas (IoT, Internet of Things), es posible crear una conectividad entre el mundo físico y el virtual. Más allá de la mera identificación de objetos existentes, esta conectividad permite incorporar información adicional, que puede ponerse en disposición de los diferentes grupos de usuarios que intervienen durante el ciclo completo de vida de la estructura de la edificación. Se consigue un alto de nivel de transparencia en ese traspaso de información, accesible por medio del escaneado de los elementos etiquetados en la edificación, al tener una completa información asociada que es presentada a los usuarios vía aplicaciones en formato visual o de audio. Una investigación en la aplicación de tecnología RFID basada en BIM para un sistema de navegación electrónica, destinada a personas con discapacidad visual, ha sido desarrollada en mi trabajo fin de grado en la Universidad de Ciencias Aplicadas de Mittelhessen (THM). El presente Trabajo Fin de Master se centra en la implementación de tecnología RFID pasiva en modelos BIM combinados con aplicaciones de software libre. El modelo BIM representa el gemelo digital de los elementos de construcción en el mundo virtual, permitiendo establecer una relación del modelo con estructuras físicas (edificios, carreteras o sistemas de alcantarillado, entre otros) y materiales de construcción (por ejemplo, textiles, cubiertas de suelo minerales o plásticas, componentes de hormigón, …) por medio de la integración de etiquetas RFID. La conexión de los modelos paramétricos BIM con los elementos físicos del edificio, mediante el uso de tecnologías RFID e IoT inalámbricas en una aplicación multiplataforma, permite que los modelos de construcción BIM se utilicen activamente a lo largo del ciclo de vida de un edificio, no solo por la gestión de las instalaciones, sino también por el público para diversos casos de uso. Durante la revisión bibliográfica, se seleccionaron los componentes de software y hardware adecuados, y se desarrolló un prototipo de aplicación multiplataforma para un sistema de navegación y posicionamiento como prueba de viabilidad del concepto del modelo Industry Foundation Classes (IFC). (Véase la versión de demostración en https://opennavibim.herokuapp.com/ ). La lectura de las etiquetas RFID en diferentes en diferentes situaciones de instalación presenta un desafío, dependiendo de la instalación (debajo, encima o en el material) los requisitos impuestos a las etiquetas y lectores RFID son diferentes. Por lo tanto, es necesario seguir desarrollando el hardware en este ámbito.Máster en Ingeniería de Caminos, Canales y Puertos (Plan 2020

    Smart cities: event everywhere

    Get PDF
    The research attempts to provide a big picture from the literature through a Systematic Literature Review about the smart city and the existing standards topics for interchanging data through Smart City Apps. Additionally a prototype was created to analyze one of the standards found in the SL

    Mobile phone technology as an aid to contemporary transport questions in walkability, in the context of developing countries

    Get PDF
    The emerging global middle class, which is expected to double by 2050 desires more walkable, liveable neighbourhoods, and as distances between work and other amenities increases, cities are becoming less monocentric and becoming more polycentric. African cities could be described as walking cities, based on the number of people that walk to their destinations as opposed to other means of mobility but are often not walkable. Walking is by far the most popular form of transportation in Africa’s rapidly urbanising cities, although it is not often by choice rather a necessity. Facilitating this primary mode, while curbing the growth of less sustainable mobility uses requires special attention for the safety and convenience of walking in view of a Global South context. In this regard, to further promote walking as a sustainable mobility option, there is a need to assess the current state of its supporting infrastructure and begin giving it higher priority, focus and emphasis. Mobile phones have emerged as a useful alternative tool to collect this data and audit the state of walkability in cities. They eliminate the inaccuracies and inefficiencies of human memories because smartphone sensors such as GPS provides information with accuracies within 5m, providing superior accuracy and precision compared to other traditional methods. The data is also spatial in nature, allowing for a range of possible applications and use cases. Traditional inventory approaches in walkability often only revealed the perceived walkability and accessibility for only a subset of journeys. Crowdsourcing the perceived walkability and accessibility of points of interest in African cities could address this, albeit aspects such as ease-of-use and road safety should also be considered. A tool that crowdsources individual pedestrian experiences; availability and state of pedestrian infrastructure and amenities, using state-of-the-art smartphone technology, would over time also result in complete surveys of the walking environment provided such a tool is popular and safe. This research will illustrate how mobile phone applications currently in the market can be improved to offer more functionality that factors in multiple sensory modalities for enhanced visual appeal, ease of use, and aesthetics. The overarching aim of this research is, therefore, to develop the framework for and test a pilot-version mobile phone-based data collection tool that incorporates emerging technologies in collecting data on walkability. This research project will assess the effectiveness of the mobile application and test the technical capabilities of the system to experience how it operates within an existing infrastructure. It will continue to investigate the use of mobile phone technology in the collection of user perceptions of walkability, and the limitations of current transportation-based mobile applications, with the aim of developing an application that is an improvement to current offerings in the market. The prototype application will be tested and later piloted in different locations around the globe. Past studies are primarily focused on the development of transport-based mobile phone applications with basic features and limited functionality. Although limited progress has been made in integrating emerging advanced technologies such as Augmented Reality (AR), Machine Learning (ML), Big Data analytics, amongst others into mobile phone applications; what is missing from these past examples is a comprehensive and structured application in the transportation sphere. In turn, the full research will offer a broader understanding of the iii information gathered from these smart devices, and how that large volume of varied data can be better and more quickly interpreted to discover trends, patterns, and aid in decision making and planning. This research project attempts to fill this gap and also bring new insights, thus promote the research field of transportation data collection audits, with particular emphasis on walkability audits. In this regard, this research seeks to provide insights into how such a tool could be applied in assessing and promoting walkability as a sustainable and equitable mobility option. In order to get policy-makers, analysts, and practitioners in urban transport planning and provision in cities to pay closer attention to making better, more walkable places, appealing to them from an efficiency and business perspective is vital. This crowdsourced data is of great interest to industry practitioners, local governments and research communities as Big Data, and to urban communities and civil society as an input in their advocacy activities. The general findings from the results of this research show clear evidence that transport-based mobile phone applications currently available in the market are increasingly getting outdated and are not keeping up with new and emerging technologies and innovations. It is also evident from the results that mobile smartphones have revolutionised the collection of transport-related information hence the need for new initiatives to help take advantage of this emerging opportunity. The implications of these findings are that more attention needs to be paid to this niche going forward. This research project recommends that more studies, particularly on what technologies and functionalities can realistically be incorporated into mobile phone applications in the near future be done as well as on improving the hardware specifications of mobile phone devices to facilitate and support these emerging technologies whilst keeping the cost of mobile devices as low as possible

    Geographic Citizen Science Design

    Get PDF
    Little did Isaac Newton, Charles Darwin and other ‘gentlemen scientists’ know, when they were making their scientific discoveries, that some centuries later they would inspire a new field of scientific practice and innovation, called citizen science. The current growth and availability of citizen science projects and relevant applications to support citizen involvement is massive; every citizen has an opportunity to become a scientist and contribute to a scientific discipline, without having any professional qualifications. With geographic interfaces being the common approach to support collection, analysis and dissemination of data contributed by participants, ‘geographic citizen science’ is being approached from different angles. Geographic Citizen Science Design takes an anthropological and Human-Computer Interaction (HCI) stance to provide the theoretical and methodological foundations to support the design, development and evaluation of citizen science projects and their user-friendly applications. Through a careful selection of case studies in the urban and non-urban contexts of the Global North and South, the chapters provide insights into the design and interaction barriers, as well as on the lessons learned from the engagement of a diverse set of participants; for example, literate and non-literate people with a range of technical skills, and with different cultural backgrounds. Looking at the field through the lenses of specific case studies, the book captures the current state of the art in research and development of geographic citizen science and provides critical insight to inform technological innovation and future research in this area

    Geographic Citizen Science Design: No one left behind

    Get PDF
    Little did Isaac Newton, Charles Darwin and other ‘gentlemen scientists’ know, when they were making their scientific discoveries, that some centuries later they would inspire a new field of scientific practice and innovation, called citizen science. The current growth and availability of citizen science projects and relevant applications to support citizen involvement is massive; every citizen has an opportunity to become a scientist and contribute to a scientific discipline, without having any professional qualifications. With geographic interfaces being the common approach to support collection, analysis and dissemination of data contributed by participants, ‘geographic citizen science’ is being approached from different angles. Geographic Citizen Science Design takes an anthropological and Human-Computer Interaction (HCI) stance to provide the theoretical and methodological foundations to support the design, development and evaluation of citizen science projects and their user-friendly applications. Through a careful selection of case studies in the urban and non-urban contexts of the Global North and South, the chapters provide insights into the design and interaction barriers, as well as on the lessons learned from the engagement of a diverse set of participants; for example, literate and non-literate people with a range of technical skills, and with different cultural backgrounds. Looking at the field through the lenses of specific case studies, the book captures the current state of the art in research and development of geographic citizen science and provides critical insight to inform technological innovation and future research in this area

    ICT Update 79: Data revolution for agriculture

    No full text
    ICT Update is a bimonthly printed and on line magazine (http://ictupdate.cta.int) and an accompanying email newsletter published by CTA. This issue focuses on data revolution for agriculture
    corecore