1,429 research outputs found

    Proposition and validation of an original MAC layer with simultaneous medium accesses for low latency wireless control/command applications

    Get PDF
    Control/command processes require a transmission system with some characteristics like high reliability, low latency and strong guarantees on messages delivery. Concerning wire networks, field buses technologies like FIP offer this kind of service (periodic tasks, real time constraints...). Unfortunately, few wireless technologies can propose a communication system which respects such constraints. Indeed, wireless transmissions must deal with medium characteristics which make impossible the direct translation of mechanisms used with wire networks. The purpose of this paper is to present an original Medium Access Control (MAC) layer for a real time Low Power-Wireless Personal Area Network (LP-WPAN). The proposed MAC-layer has been validated by several complementary methods; in this paper, we focus on the specific Simultaneous Guaranteed Time Slot (SGTS) part

    MH-REACH-Mote: supporting multi-hop passive radio wake-up for wireless sensor network

    Get PDF
    A passive wake-up radio in a wireless sensor network (WSN) has the advantage of increasing network lifetime by using a wake-up radio receiver (WuRx) to eliminate unnecessary idle listening. A sensor node equipped with a WuRx can operate in an ultra-low-power sleep mode, waiting for a trigger signal sent by the wake-up radio transmitter (WuTx). The passive WuRx is entirely powered by the energy harvested from radio transmissions sent by the WuTx. Therefore, it has the advantage of not consuming any energy locally, which would drain the sensor node's battery. Even so, the high amount of energy required to wake up a passive WuRx by a WuTx makes it difficult to build a multi-hop passive wake-up sensor network. In this paper, we describe and discuss our implementation of a battery-powered sensor node with multi-hop wake-up capability using passive WuRxs, called MH-REACH-Mote (Multi-hop-Range EnhAnCing energy Harvester-Mote). The MH-REACH-Mote is kept in an ultra-low-power sleep mode until it receives a wake-up trigger signal. Upon receipt, it wakes up and transmits a new trigger signal to power other passive WuRxs. We evaluate the wake-up range and power consumption of an MH-REACH-Mote through a series of field tests. Results show that the MH-REACH-Mote enables multi-hop wake-up capabilities for passive WuRxs with a wake-up range of 9.4m while requiring a reasonable power consumption for WuTx functionality. We also simulate WSN data collection scenarios with MH-REACH-Motes and compare the results with those of active wake-up sensor nodes as well as a low power listening approach. The results show that the MH-REACH-Mote enables a longer overall lifetime than the other two approaches when data is collected infrequently.Peer ReviewedPostprint (author's final draft

    MAC protocols with wake-up radio for wireless sensor networks: A review

    Get PDF
    The use of a low-power wake-up radio in wireless sensor networks is considered in this paper, where relevant medium access control solutions are studied. A variety of asynchronous wake-up MAC protocols have been proposed in the literature, which take advantage of integrating a second radio to the main one for waking it up. However, a complete and a comprehensive survey particularly on these protocols is missing in the literature. This paper aims at filling this gap, proposing a relevant taxonomy, and providing deep analysis and discussions. From both perspectives of energy efficiency and latency reduction, as well as their operation principles, state-of-the-art wake-up MAC protocols are grouped into three main categories: (1) duty cycled wake-up MAC protocols; (2) non-cycled wake-up protocols; and (3) path reservation wake-up protocols. The first category includes two subcategories: (1) static wake-up protocols versus (2) traffic adaptive wake-up protocols. Non-cycled wake-up MAC protocols are again divided into two classes: (1) always-on wake-up protocol and (2) radio-triggered wake-up protocols. The latter is in turn split into two subclasses: (1) passive wake-up MAC protocols versus (2) ultra low power active wake-up MAC protocols. Two schemes could be identified for the last category, (1) broadcast based wake-up versus (2) addressing based wake-up. All these classes are discussed and analyzed in this paper, and canonical protocols are investigated following the proposed taxonomy
    • …
    corecore