486 research outputs found

    Geographic Information Systems and Science

    Get PDF
    Geographic information science (GISc) has established itself as a collaborative information-processing scheme that is increasing in popularity. Yet, this interdisciplinary and/or transdisciplinary system is still somewhat misunderstood. This book talks about some of the GISc domains encompassing students, researchers, and common users. Chapters focus on important aspects of GISc, keeping in mind the processing capability of GIS along with the mathematics and formulae involved in getting each solution. The book has one introductory and eight main chapters divided into five sections. The first section is more general and focuses on what GISc is and its relation to GIS and Geography, the second is about location analytics and modeling, the third on remote sensing data analysis, the fourth on big data and augmented reality, and, finally, the fifth looks over volunteered geographic information.info:eu-repo/semantics/publishedVersio

    Semi-Supervised Learning Method for the Augmentation of an Incomplete Image-Based Inventory of Earthquake-Induced Soil Liquefaction Surface Effects

    Get PDF
    Soil liquefaction often occurs as a secondary hazard during earthquakes and can lead to significant structural and infrastructure damage. Liquefaction is most often documented through field reconnaissance and recorded as point locations. Complete liquefaction inventories across the impacted area are rare but valuable for developing empirical liquefaction prediction models. Remote sensing analysis can be used to rapidly produce the full spatial extent of liquefaction ejecta after an event to inform and supplement field investigations. Visually labeling liquefaction ejecta from remotely sensed imagery is time-consuming and prone to human error and inconsistency. This study uses a partially labeled liquefaction inventory created from visual annotations by experts and proposes a pixel-based approach to detecting unlabeled liquefaction using advanced machine learning and image processing techniques, and to generating an augmented inventory of liquefaction ejecta with high spatial completeness. The proposed methodology is applied to aerial imagery taken from the 2011 Christchurch earthquake and considers the available partial liquefaction labels as high-certainty liquefaction features. This study consists of two specific comparative analyses. (1) To tackle the limited availability of labeled data and their spatial incompleteness, a semi-supervised self-training classification via Linear Discriminant Analysis is presented, and the performance of the semi-supervised learning approach is compared with supervised learning classification. (2) A post-event aerial image with RGB (red-green-blue) channels is used to extract color transformation bands, statistical indices, texture components, and dimensionality reduction outputs, and performances of the classification model with different combinations of selected features from these four groups are compared. Building footprints are also used as the only non-imagery geospatial information to improve classification accuracy by masking out building roofs from the classification process. To prepare the multi-class labeled data, regions of interest (ROIs) were drawn to collect samples of seven land cover and land use classes. The labeled samples of liquefaction were also clustered into two groups (dark and light) using the Fuzzy C-Means clustering algorithm to split the liquefaction pixels into two classes. A comparison of the generated maps with fully and manually labeled liquefaction data showed that the proposed semi-supervised method performs best when selected high-ranked features of the two groups of statistical indices (gradient weight and sum of the band squares) and dimensionality reduction outputs (first and second principal components) are used. It also outperforms supervised learning and can better augment the liquefaction labels across the image in terms of spatial completeness

    Earthquake damage assessment in urban area from Very High Resolution satellite data

    Get PDF
    The use of remote sensing within the domain of natural hazards and disaster management has become increasingly popular, due in part to increased awareness of environmental issues, including climate change, but also to the improvement of geospatial technologies and the ability to provide high quality imagery to the public through the media and internet. As technology is enhanced, demand and expectations increase for near-real-time monitoring and images to be relayed to emergency services in the event of a natural disaster. During a seismic event, in particular, it is fundamental to obtain a fast and reliable map of the damage of urban areas to manage civil protection interventions. Moreover, the identification of the destruction caused by an earthquake provides seismology and earthquake engineers with informative and valuable data, experiences and lessons in the long term. An accurate survey of damage is also important to assess the economic losses, and to manage and share the resources to be allocated during the reconstruction phase. Satellite remote sensing can provide valuable pieces of information on this regard, thanks to the capability of an instantaneous synoptic view of the scene, especially if the seismic event is located in remote regions, or if the main communication systems are damaged. Many works exist in the literature on this topic, considering both optical data and radar data, which however put in evidence some limitations of the nadir looking view, of the achievable level of details and response time, and the criticality of image radiometric and geometric corrections. The visual interpretation of optical images collected before and after a seismic event is the approach followed in many cases, especially for an operational and rapid release of the damage extension map. Many papers, have evaluated change detection approaches to estimate damage within large areas (e.g., city blocks), trying to quantify not only the extension of the affected area but also the level of damage, for instance correlating the collapse ratio (percentage of collapsed buildings in an area) measured on ground with some change parameters derived from two images, taken before and after the earthquake. Nowadays, remotely sensed images at Very High Resolution (VHR) may in principle enable production of earthquake damage maps at single-building scale. The complexity of the image forming mechanisms within urban settlements, especially of radar images, makes the interpretation and analysis of VHR images still a challenging task. Discrimination of lower grade of damage is particularly difficult using nadir looking sensors. Automatic algorithms to detect the damage are being developed, although as matter of fact, these works focus very often on specific test cases and sort of canonical situations. In order to make the delivered product suitable for the user community, such for example Civil Protection Departments, it is important to assess its reliability on a large area and in different and challenging situations. Moreover, the assessment shall be directly compared to those data the final user adopts when carrying out its operational tasks. This kind of assessment can be hardly found in the literature, especially when the main focus is on the development of sophisticated and advanced algorithms. In this work, the feasibility of earthquake damage products at the scale of individual buildings, which relies on a damage scale recognized as a standard, is investigated. To this aim, damage maps derived from VHR satellite images collected by Synthetic Aperture Radar (SAR) and optical sensors, were systematically compared to ground surveys carried out by different teams and with different purposes and protocols. Moreover, the inclusion of a priori information, such as vulnerability models for buildings and soil geophysical properties, to improve the reliability of the resulting damage products, was considered in this study. The research activity presented in this thesis was carried out in the framework of the APhoRISM (Advanced PRocedures for volcanIc Seismic Monitoring) project, funded by the European Union under the EC-FP7 call. APhoRISM was aimed at demonstrating that an appropriate management and integration of satellite and ground data can provide new improved products useful for seismic and volcanic crisis management

    Earthquake damage analysis and mapping with the use of satellite remote sensing

    Get PDF
    After a seismic event a rapid and accurate evaluation of the impact of the damages is extremely important. Such evaluation may support rescue team operations and identify the actual dimensions of the event and its potential impact on the territory and on the population. The use of Earth Observation (EO) data has been significantly increasing in the last years, particularly the use of Very High Resolution (VHR) optical images, which are able to provide detailed information at single building level. However, most of the existing approaches mainly rely on the use of remote sensing data, either optical or SAR (Synthetic Aperture Radar), and perform a classification based on change detection techniques. In this work we aim at creating a flexible tool that is able to perform a damage classification taking into account, not only EO available data, but also additional information that is supposed to be available even before the occurrence of any seismic event (a-priori data). This data includes soil vulnerability, which can play a very important role on local amplification effects as well as structural information of the individual building. Such approach, pursued within the framework of the EC-FP7 funded project APhoRISM (Advanced Procedures for Volcanic and Seismic Monitoring- grant agreement n. 606738) aims at generating maps of damage caused by a seism using both satellite remote sensing data (SAR and/or optical sensors) and ground and structural data. The basic idea is to integrate both satellite remote sensing data (SAR and/or optical sensors) with structural and ground data to improve the accuracy and limit false alarms that derive by the use of EO data only. In order to do this, we first review the general approach and methods to data fusion and we identify what is the level of information that is better to merge referring to our goals. We also examine how the structural information is evaluated and we then focus on the description of Bayesian approaches and, more specifically, of Bayesian networks. Such type of graphical approach for our data fusion tool is implemented to assess post-earthquake building damage. We validate our Bayesian networks against the real test case based on L’ Aquila (Italy) earthquake which took place on April 6, 2009. In this case, we have a set of data available to build the Ground Truth validation test set. For what concerns remote sensing data, for this event, both COSMO-Skymed Radar and Quickbird VHR optical sensors were available thus allowing a complete remote sensing dataset. The in-situ information, though fragmentary, was built using data coming from different sources, mainly from INGV (Italian Geophysical and Volcano Institute) and the Italian Civil Protection Department. The promising results of different Bayesian networks are presented showing the step-by-step approach adopted, which aims at generalising the methodology in order to further implement the network in future cases
    • …
    corecore