1,830 research outputs found

    Forecasting Automobile Demand Via Artificial Neural Networks & Neuro-Fuzzy Systems

    Get PDF
    The objective of this research is to obtain an accurate forecasting model for the demand for automobiles in Iran\u27s domestic market. The model is constructed using production data for vehicles manufactured from 2006 to 2016, by Iranian car makers. The increasing demand for transportation and automobiles in Iran necessitated an accurate forecasting model for car manufacturing companies in Iran so that future demand is met. Demand is deduced as a function of the historical data. The monthly gold, rubber, and iron ore prices along with the monthly commodity metals price index and the Stock index of Iran are Artificial neural network (ANN) and artificial neuro-fuzzy system (ANFIS) have been utilized in many fields such as energy consumption and load forecasting fields. The performances of the methodologies are investigated towards obtaining the most accurate forecasting model in terms of the forecast Mean Absolute Percentage Error (MAPE). It was concluded that the feedforward multi-layer perceptron network with back-propagation and the Levenberg-Marquardt learning algorithm provides forecasts with the lowest MAPE (5.85%) among the other models. Further development of the ANN network based on more data is recommended to enhance the model and obtain more accurate networks and subsequently improved forecasts

    Oil price forecasting using gene expression programming and artificial neural networks

    Get PDF
    This study aims to forecast oil prices using evolutionary techniques such as gene expression programming (GEP) and artificial neural network (NN) models to predict oil prices over the period from January 2, 1986 to June 12, 2012. Autoregressive integrated moving average (ARIMA) models are employed to benchmark evolutionary models. The results reveal that the GEP technique outperforms traditional statistical techniques in predicting oil prices. Further, the GEP model outperforms the NN and the ARIMA models in terms of the mean squared error, the root mean squared error and the mean absolute error. Finally, the GEP model also has the highest explanatory power as measured by the R-squared statistic. The results of this study have important implications for both theory and practice

    Predicting the Future

    Get PDF
    Due to the increased capabilities of microprocessors and the advent of graphics processing units (GPUs) in recent decades, the use of machine learning methodologies has become popular in many fields of science and technology. This fact, together with the availability of large amounts of information, has meant that machine learning and Big Data have an important presence in the field of Energy. This Special Issue entitled “Predicting the Future—Big Data and Machine Learning” is focused on applications of machine learning methodologies in the field of energy. Topics include but are not limited to the following: big data architectures of power supply systems, energy-saving and efficiency models, environmental effects of energy consumption, prediction of occupational health and safety outcomes in the energy industry, price forecast prediction of raw materials, and energy management of smart buildings

    A Review of Forecasting Techniques

    Get PDF
    This work examines recent publications in forecasting in various fields, these include: wind power forecasting; electricity load forecasting; crude oil price forecasting; gold price forecasting energy price forecasting etc. In this review, categorization of the processes involve in forecasting are divided into four major steps namely: input features selection; data pre-processing; forecast model development and performance evaluation. The various methods involve are discussed in order to provide the overall view about possible options for development of forecasting system. It is intended that the classification of the steps into small categories with definitions of terms and discussion of evolving techniques will provide guidance for future forecasting sytem designers

    Enhanced artificial bee colony-least squares support vector machines algorithm for time series prediction

    Get PDF
    Over the past decades, the Least Squares Support Vector Machines (LSSVM) has been widely utilized in prediction task of various application domains. Nevertheless, existing literature showed that the capability of LSSVM is highly dependent on the value of its hyper-parameters, namely regularization parameter and kernel parameter, where this would greatly affect the generalization of LSSVM in prediction task. This study proposed a hybrid algorithm, based on Artificial Bee Colony (ABC) and LSSVM, that consists of three algorithms; ABC-LSSVM, lvABC-LSSVM and cmABC-LSSVM. The lvABC algorithm is introduced to overcome the local optima problem by enriching the searching behaviour using Levy mutation. On the other hand, the cmABC algorithm that incorporates conventional mutation addresses the over- fitting or under-fitting problem. The combination of lvABC and cmABC algorithm, which is later introduced as Enhanced Artificial Bee Colony–Least Squares Support Vector Machine (eABC-LSSVM), is realized in prediction of non renewable natural resources commodity price. Upon the completion of data collection and data pre processing, the eABC-LSSVM algorithm is designed and developed. The predictability of eABC-LSSVM is measured based on five statistical metrics which include Mean Absolute Percentage Error (MAPE), prediction accuracy, symmetric MAPE (sMAPE), Root Mean Square Percentage Error (RMSPE) and Theils’ U. Results showed that the eABC-LSSVM possess lower prediction error rate as compared to eight hybridization models of LSSVM and Evolutionary Computation (EC) algorithms. In addition, the proposed algorithm is compared to single prediction techniques, namely, Support Vector Machines (SVM) and Back Propagation Neural Network (BPNN). In general, the eABC-LSSVM produced more than 90% prediction accuracy. This indicates that the proposed eABC-LSSVM is capable of solving optimization problem, specifically in the prediction task. The eABC-LSSVM is hoped to be useful to investors and commodities traders in planning their investment and projecting their profit

    Sensitivity of MAPE using detection rate for big data forecasting crude palm oil on k-nearest neighbor

    Get PDF
    Forecasting involves all areas in predicting future events. Many problems can be solved by using a forecasting approach to become a study in the field of data science. Forecasting that learns through data in the light age is able to solve problems with large-scale data or big data. With the big data, the performance of the k-Nearest Neighbor (k-NN) method can be tested with several accuracy measurements. Generally, accuracy measurement uses MAPE so it is necessary to conduct sensitivity on MAPE by combining it with the detection rate which is the difference technique. In addition, the k-NN process has been developed for the sake of running sensitivity by performing normalized distance using normalized Euclidean distance so that in this paper using the crude palm oil (CPO) price dataset, it is able to forecast and become a future model and apply it to Business Intelligence and analysis. In the final stage of this paper, the accuracy value in doing big data forecasting on CPO prices with MAPE is 0.013526% and MAPE sensitivity combined with a detection rate of 0.000361% so that future processes using different methods need to involve detection rates

    Data Size Requirement for Forecasting Daily Crude Oil Price with Neural Networks

    Get PDF
    When the literature regarding applications of neural networks is investigated, it appears that a substantial issue is what size the training data should be when modelling a time series through neural networks. The aim of this paper is to determine the size of training data to be used to construct a forecasting model via a multiple-breakpoint test and compare its performance with two general methods, namely, using all available data and using just two years of data. Furthermore, the importance of the selection of the final neural network model is investigated in detail. The results obtained from daily crude oil prices indicate that the data from the last structural change lead to simpler architectures of neural networks and have an advantage in reaching more accurate forecasts in terms of MAE value. In addition, the statistical tests show that there is a statistically significant interaction between data size and stopping rule.JEL Codes - Q47; C45; C5

    Long-Term Load Forecasting Considering Volatility Using Multiplicative Error Model

    Full text link
    Long-term load forecasting plays a vital role for utilities and planners in terms of grid development and expansion planning. An overestimate of long-term electricity load will result in substantial wasted investment in the construction of excess power facilities, while an underestimate of future load will result in insufficient generation and unmet demand. This paper presents first-of-its-kind approach to use multiplicative error model (MEM) in forecasting load for long-term horizon. MEM originates from the structure of autoregressive conditional heteroscedasticity (ARCH) model where conditional variance is dynamically parameterized and it multiplicatively interacts with an innovation term of time-series. Historical load data, accessed from a U.S. regional transmission operator, and recession data for years 1993-2016 is used in this study. The superiority of considering volatility is proven by out-of-sample forecast results as well as directional accuracy during the great economic recession of 2008. To incorporate future volatility, backtesting of MEM model is performed. Two performance indicators used to assess the proposed model are mean absolute percentage error (for both in-sample model fit and out-of-sample forecasts) and directional accuracy.Comment: 19 pages, 11 figures, 3 table
    • …
    corecore