2,333 research outputs found

    Low ML-Decoding Complexity, Large Coding Gain, Full-Rate, Full-Diversity STBCs for 2 X 2 and 4 X 2 MIMO Systems

    Full text link
    This paper (Part of the content of this manuscript has been accepted for presentation in IEEE Globecom 2008, to be held in New Orleans) deals with low maximum likelihood (ML) decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2×22\times 2) and the 4 transmit antenna, 2 receive antenna (4×24\times 2) MIMO systems. Presently, the best known STBC for the 2×22\times2 system is the Golden code and that for the 4×24\times2 system is the DjABBA code. Following the approach by Biglieri, Hong and Viterbo, a new STBC is presented in this paper for the 2×22\times 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be \emph{information-lossless} and \emph{diversity-multiplexing gain} (DMG) tradeoff optimal. This design procedure is then extended to the 4×24\times 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of M4M^4 for square QAM of size MM. In this paper, a scheme that reduces its ML-decoding complexity to M2MM^2\sqrt{M} is presented.Comment: 28 pages, 5 figures, 3 tables, submitted to IEEE Journal of Selected Topics in Signal Processin

    DMT Optimality of LR-Aided Linear Decoders for a General Class of Channels, Lattice Designs, and System Models

    Full text link
    The work identifies the first general, explicit, and non-random MIMO encoder-decoder structures that guarantee optimality with respect to the diversity-multiplexing tradeoff (DMT), without employing a computationally expensive maximum-likelihood (ML) receiver. Specifically, the work establishes the DMT optimality of a class of regularized lattice decoders, and more importantly the DMT optimality of their lattice-reduction (LR)-aided linear counterparts. The results hold for all channel statistics, for all channel dimensions, and most interestingly, irrespective of the particular lattice-code applied. As a special case, it is established that the LLL-based LR-aided linear implementation of the MMSE-GDFE lattice decoder facilitates DMT optimal decoding of any lattice code at a worst-case complexity that grows at most linearly in the data rate. This represents a fundamental reduction in the decoding complexity when compared to ML decoding whose complexity is generally exponential in rate. The results' generality lends them applicable to a plethora of pertinent communication scenarios such as quasi-static MIMO, MIMO-OFDM, ISI, cooperative-relaying, and MIMO-ARQ channels, in all of which the DMT optimality of the LR-aided linear decoder is guaranteed. The adopted approach yields insight, and motivates further study, into joint transceiver designs with an improved SNR gap to ML decoding.Comment: 16 pages, 1 figure (3 subfigures), submitted to the IEEE Transactions on Information Theor

    Full Diversity Space-Time Block Codes with Low-Complexity Partial Interference Cancellation Group Decoding

    Full text link
    Partial interference cancellation (PIC) group decoding proposed by Guo and Xia is an attractive low-complexity alternative to the optimal processing for multiple-input multiple-output (MIMO) wireless communications. It can well deal with the tradeoff among rate, diversity and complexity of space-time block codes (STBC). In this paper, a systematic design of full-diversity STBC with low-complexity PIC group decoding is proposed. The proposed code design is featured as a group-orthogonal STBC by replacing every element of an Alamouti code matrix with an elementary matrix composed of multiple diagonal layers of coded symbols. With the PIC group decoding and a particular grouping scheme, the proposed STBC can achieve full diversity, a rate of (2M)/(M+2)(2M)/(M+2) and a low-complexity decoding for MM transmit antennas. Simulation results show that the proposed codes can achieve the full diversity with PIC group decoding while requiring half decoding complexity of the existing codes.Comment: 10 pages, 3 figures

    A Low-Complexity, Full-Rate, Full-Diversity 2 X 2 STBC with Golden Code's Coding Gain

    Full text link
    This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2×22\times 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.Comment: Submitted to IEEE Globecom - 2008. 6 pages, 3 figures, 1 tabl

    Fast-Decodable Asymmetric Space-Time Codes from Division Algebras

    Full text link
    Multiple-input double-output (MIDO) codes are important in the near-future wireless communications, where the portable end-user device is physically small and will typically contain at most two receive antennas. Especially tempting is the 4 x 2 channel due to its immediate applicability in the digital video broadcasting (DVB). Such channels optimally employ rate-two space-time (ST) codes consisting of (4 x 4) matrices. Unfortunately, such codes are in general very complex to decode, hence setting forth a call for constructions with reduced complexity. Recently, some reduced complexity constructions have been proposed, but they have mainly been based on different ad hoc methods and have resulted in isolated examples rather than in a more general class of codes. In this paper, it will be shown that a family of division algebra based MIDO codes will always result in at least 37.5% worst-case complexity reduction, while maintaining full diversity and, for the first time, the non-vanishing determinant (NVD) property. The reduction follows from the fact that, similarly to the Alamouti code, the codes will be subsets of matrix rings of the Hamiltonian quaternions, hence allowing simplified decoding. At the moment, such reductions are among the best known for rate-two MIDO codes. Several explicit constructions are presented and shown to have excellent performance through computer simulations.Comment: 26 pages, 1 figure, submitted to IEEE Trans. Inf. Theory, October 201

    Transmission and detection for space-time block coding and v-blast systems

    Get PDF
    This dissertation focuses on topics of data transmission and detection of space -time block codes (STBC). The STBCs can be divided into two main categories, namely, the orthogonal space-time block codes (OSTBC) and the quasi-orthogonal space-time codes (Q-OSTBC). The space-time block coded systems from transceiver design perspective for both narrow-band and frequency selective wireless environment are studied. The dissertation also processes and studies a fast iterative detection scheme for a high-rate space-time transmission system, the V-BLAST system. In Chapter 2, a new OSTBC scheme with full-rate and full-diversity, which can be used on QPSK transceiver systems with four transmit antennas and any number of receivers is studied. The newly proposed coding scheme is a non-linear coding. Compared with full-diversity QOSTBC, an obvious advantage of our proposed new OSTBC is that the coded signals transmitted through all four transmit antennas do not experience any constellation expansion. In Chapter 3, a new fast coherent detection algorithm is proposed to provide maximum likelihood (ML) detection for Q-OSTBC. The new detection scheme is also very useful to analysis the diversity property of Q-OSTBC and design full diversity Q-OSTBC codes. The complexity of the new proposed detection algorithm can be independent to the modulation order and is especially suitable for high data rate transmission. In Chapter 4, the space-time coding schemes in frequency selective channels are studied. Q-OSTC transmission and detection schemes are firstly extended for frequency selective wireless environment. A new block based quasi-orthogonal space-time block encoding and decoding (Q-OSTBC) scheme for a wireless system with four transmit antennas is proposed in frequency selective fading channels. The proposed MLSE detection scheme effectively combats channel dispersion and frequency selectivity due to multipath, yet still provides full diversity gain. However, since the computational complexity of MLSE detection increases exponentially with the maximum delay of the frequency selective channel, a fast sub-optimal detection scheme using MMSE equalizer is also proposed, especially for channels with large delays. The Chapter 5 focuses on the V-BLAST system, an important high-rate space-time data transmission scheme. A reduced complexity ML detection scheme for VBLAST systems, which uses a pre-decoder guided local exhaustive search is proposed and studied. A polygon searching algorithm and an ordered successive interference cancellation (O-SIC) sphere searching algorithm are major components of the proposed multi-step ML detectors. At reasonable high SNRs, our algorithms have low complexity comparable to that of O-SIC algorithm, while they provide significant performance improvement. Another new low complexity algorithm termed ordered group-wise interference cancellation (O-GIC) is also proposed for the detection of high dimensional V-BLAST systems. The O-GIC based detection scheme is a sub-optimal detection scheme, however, it outperforms the O-SIC

    Quasi-orthogonal space-frequency coding in non-coherent cooperative broadband networks

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.So far, complex valued orthogonal codes have been used differentially in cooperative broadband networks. These codes however achieve less than unitary code rate when utilized in cooperative networks with more than two relays. Therefore, the main challenge is how to construct unitary rate codes for non-coherent cooperative broadband networks with more than two relays while exploiting the achievable spatial and frequency diversity. In this paper, we extend full rate quasi-orthogonal codes to differential cooperative broadband networks where channel information is unavailable. From this, we propose a generalized differential distributed quasi-orthogonal space-frequency coding (DQSFC) protocol for cooperative broadband networks. Our proposed scheme is able to achieve full rate, and full spatial and frequency diversity in cooperative networks with any number of relays. Through pairwise error probability analysis we show that the diversity gain of our scheme can be improved by appropriate code construction and sub-carrier allocation. Based on this, we derive sufficient conditions for the proposed code structure at the source node and relay nodes to achieve full spatial and frequency diversity.Peer reviewe
    • …
    corecore