104 research outputs found

    Analysis of MHPDM algorithm for data hiding in JPEG images

    Get PDF
    In the recent years, there has been a great deal of interest in developing a secure algorithm for hiding information in images, or steganography. There has also been a lot of research in steganalysis of images, which deals with the detection of hidden information in supposedly natural images. The first section of this thesis reviews the steganography algorithms and steganalysis techniques developed in the last few years. It discusses the breadth of steganographic algorithms and steganalytic techniques, starting with the earliest, based on LSB flipping of the DCT coefficients, to more recent and sophisticated algorithms for data hiding and equally clever steganalytic techniques. The next section focuses on the steganographic algorithm, MHPDM which was first developed by Eggers and then modified by Tzschoppe, Bauml, Huber and Kaup. The MHPDM algorithm preserves the histogram of the stego image and is thus perfectly secure in terms of Cachin\u27s security definition. The MHPDM algorithm is explained in detail and implemented in MATLAB. It is then tested on numerous images and steganalysed using Dr. Fridrich\u27s recent feature-based steganalytic technique. The thesis concludes with observations about the detectibility of MHPDM using feature-based steganalysis for different payloads (embedded message lengths)

    Secure covert communications over streaming media using dynamic steganography

    Get PDF
    Streaming technologies such as VoIP are widely embedded into commercial and industrial applications, so it is imperative to address data security issues before the problems get really serious. This thesis describes a theoretical and experimental investigation of secure covert communications over streaming media using dynamic steganography. A covert VoIP communications system was developed in C++ to enable the implementation of the work being carried out. A new information theoretical model of secure covert communications over streaming media was constructed to depict the security scenarios in streaming media-based steganographic systems with passive attacks. The model involves a stochastic process that models an information source for covert VoIP communications and the theory of hypothesis testing that analyses the adversaryā€˜s detection performance. The potential of hardware-based true random key generation and chaotic interval selection for innovative applications in covert VoIP communications was explored. Using the read time stamp counter of CPU as an entropy source was designed to generate true random numbers as secret keys for streaming media steganography. A novel interval selection algorithm was devised to choose randomly data embedding locations in VoIP streams using random sequences generated from achaotic process. A dynamic key updating and transmission based steganographic algorithm that includes a one-way cryptographical accumulator integrated into dynamic key exchange for covert VoIP communications, was devised to provide secure key exchange for covert communications over streaming media. The discrete logarithm problem in mathematics and steganalysis using t-test revealed the algorithm has the advantage of being the most solid method of key distribution over a public channel. The effectiveness of the new steganographic algorithm for covert communications over streaming media was examined by means of security analysis, steganalysis using non parameter Mann-Whitney-Wilcoxon statistical testing, and performance and robustness measurements. The algorithm achieved the average data embedding rate of 800 bps, comparable to other related algorithms. The results indicated that the algorithm has no or little impact on real-time VoIP communications in terms of speech quality (< 5% change in PESQ with hidden data), signal distortion (6% change in SNR after steganography) and imperceptibility, and it is more secure and effective in addressing the security problems than other related algorithms

    Modeling and frequency tracking of marine mammal whistle calls

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009Marine mammal whistle calls present an attractive medium for covert underwater communications. High quality models of the whistle calls are needed in order to synthesize natural-sounding whistles with embedded information. Since the whistle calls are composed of frequency modulated harmonic tones, they are best modeled as a weighted superposition of harmonically related sinusoids. Previous research with bottlenose dolphin whistle calls has produced synthetic whistles that sound too ā€œcleanā€ for use in a covert communications system. Due to the sensitivity of the human auditory system, watermarking schemes that slightly modify the fundamental frequency contour have good potential for producing natural-sounding whistles embedded with retrievable watermarks. Structured total least squares is used with linear prediction analysis to track the time-varying fundamental frequency and harmonic amplitude contours throughout a whistle call. Simulation and experimental results demonstrate the capability to accurately model bottlenose dolphin whistle calls and retrieve embedded information from watermarked synthetic whistle calls. Different fundamental frequency watermarking schemes are proposed based on their ability to produce natural sounding synthetic whistles and yield suitable watermark detection and retrieval

    Data hiding in multimedia - theory and applications

    Get PDF
    Multimedia data hiding or steganography is a means of communication using subliminal channels. The resource for the subliminal communication scheme is the distortion of the original content that can be tolerated. This thesis addresses two main issues of steganographic communication schemes: 1. How does one maximize the distortion introduced without affecting fidelity of the content? 2. How does one efficiently utilize the resource (the distortion introduced) for communicating as many bits of information as possible? In other words, what is a good signaling strategy for the subliminal communication scheme? Close to optimal solutions for both issues are analyzed. Many techniques for the issue for maximizing the resource, viz, the distortion introduced imperceptibly in images and video frames, are proposed. Different signaling strategies for steganographic communication are explored, and a novel signaling technique employing a floating signal constellation is proposed. Algorithms for optimal choices of the parameters of the signaling technique are presented. Other application specific issues like the type of robustness needed are taken into consideration along with the established theoretical background to design optimal data hiding schemes. In particular, two very important applications of data hiding are addressed - data hiding for multimedia content delivery, and data hiding for watermarking (for proving ownership). A robust watermarking protocol for unambiguous resolution of ownership is proposed

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    Narrowband AM interference cancellation for broadband multicarrier systems

    Get PDF
    We consider an overlay system where narrowband AM signals interfere with a broadband multicarrier system. To reduce the effect of the AM narrowband interference on the multicarrier system, we propose a low-complexity algorithm to estimate the AM narrowband interference. Analytical expressions for the performance of this estimator are derived and verified with simulations. The performance of this estimator, however, degrades when the number of interferers increases. To improve the algorithm, we adapt it such that the interferers are estimated in a successive way. The proposed estimators are able to produce accurate estimates of the frequencies, and track the time-varying amplitudes of the AM signals. The estimators can reduce the power of the AM signal to a level that is approximately 20 dB lower than the multicarrier power, independently of the AM signal power

    Digital steganalysis: Computational intelligence approach

    Get PDF
    In this paper, we present a consolidated view of digital media steganalysis from the perspective of computational intelligence.In our analysis the digital media steganalysis is divided into three domains which are image steganalysis, audio steganalysis, and video steganalysis.Three major computational intelligence methods have also been identified in the steganalysis domains which are bayesian, neural network, and genetic algorithm.Each of these methods has its own pros and cons

    A Case Study in Physical-Layer Steganography Applied to Multicarrier Transmissions

    Get PDF
    Covert communications can be a force for good, such as providing a means of message authentication to prevent malicious actors from spoofing networks. This dissertation explores the design of a covert signal to be hidden inside the bandwidth of an Orthogonal Frequency Division Multiplexing (OFDM) signal. In order to make detection by unintended observers as difficult as possible, the covert signal operates as interference inside the OFDM signal and is set to a high Signal to Interference Ratio (SIR). Given the high SIR, the OFDM signal must be cancelled in order to recover the covert signal. The detectability of the covert signal is tested using multiple detectors with and without cancellation. Among the detectors used is a Convolutional Neural Network (CNN) designed for image classification that has been repurposed through transfer learning to detect signal activity in noise and interference. The CNN detector demonstrates resilience in the presence of narrowband interference. The cancellation algorithm is enhanced with an estimate of OFDM windowing as applied at the transmitter, which is an often-overlooked parameter in cancellation applications. The enhanced cancellation-algorithm improves the cancellation of OFDM signals by 5.3 dB in an over-the-air test. The enhanced cancellation-algorithm also improves the Packet Error Rate of OFDM signals and improves the recovery of the covert signal. The improved recovery has direct application to Power-Domain Non-orthogonal Multiple Access and Rate-Splitting Multiple Access, which both rely on successive interference cancellation. Lastly, to frustrate any efforts to analyze the covert waveform, the covert signal is augmented with an adversarial waveform designed to exploit weaknesses in CNNs used for modulation classification. The classification system suffers from uncertainty in the bandwidth estimate of the covert signal. The system will likely err on the side of making the bandwidth wider than necessary. It is demonstrated that a wider bandwidth makes the attack more successful, as opposed to other estimation errors which prior literature has shown to weaken the effectiveness of these attacks

    Side-Information For Steganography Design And Detection

    Get PDF
    Today, the most secure steganographic schemes for digital images embed secret messages while minimizing a distortion function that describes the local complexity of the content. Distortion functions are heuristically designed to predict the modeling error, or in other words, how difficult it would be to detect a single change to the original image in any given area. This dissertation investigates how both the design and detection of such content-adaptive schemes can be improved with the use of side-information. We distinguish two types of side-information, public and private: Public side-information is available to the sender and at least in part also to anybody else who can observe the communication. Content complexity is a typical example of public side-information. While it is commonly used for steganography, it can also be used for detection. In this work, we propose a modification to the rich-model style feature sets in both spatial and JPEG domain to inform such feature sets of the content complexity. Private side-information is available only to the sender. The previous use of private side-information in steganography was very successful but limited to steganography in JPEG images. Also, the constructions were based on heuristic with little theoretical foundations. This work tries to remedy this deficiency by introducing a scheme that generalizes the previous approach to an arbitrary domain. We also put forward a theoretical investigation of how to incorporate side-information based on a model of images. Third, we propose to use a novel type of side-information in the form of multiple exposures for JPEG steganography

    An improved randomization of a multi-blocking jpeg based steganographic system.

    Get PDF
    Thesis (M.Sc.)-University of KwaZulu-Natal, Durban, 2010.Steganography is classified as the art of hiding information. In a digital context, this refers to our ability to hide secret messages within innocent digital cover data. The digital domain offers many opportunities for possible cover mediums, such as cloud based hiding (saving secret information within the internet and its structure), image based hiding, video and audio based hiding, text based documents as well as the potential of hiding within any set of compressed data. This dissertation focuses on the image based domain and investigates currently available image based steganographic techniques. After a review of the history of the field, and a detailed survey of currently available JPEG based steganographic systems, the thesis focuses on the systems currently considered to be secure and introduces mechanisms that have been developed to detect them. The dissertation presents a newly developed system that is designed to counter act the current weakness in the YASS JPEG based steganographic system. By introducing two new levels of randomization to the embedding process, the proposed system offers security benefits over YASS. The introduction of randomization to the Bā€block sizes as well as the Eā€block sizes used in the embedding process aids in increasing security and the potential for new, larger Eā€block sizes also aids in providing an increased set of candidate coefficients to be used for embedding. The dissertation also introduces a new embedding scheme which focuses on hiding in medium frequency coefficients. By hiding in these medium frequency coefficients, we allow for more aggressive embedding without risking more visual distortion but trade this off with a risk of higher error rates due to compression losses. Finally, the dissertation presents simulation aimed at testing the proposed system performance compared to other JPEG based steganographic systems with similar embedding properties. We show that the new system achieves an embedding capacity of 1.6, which represents round a 7 times improvement over YASS. We also show that the new system, although introducing more bits in error per Bā€block, successfully allows for the embedding of up to 2 bits per Bā€block more than YASS at a similar error rate per Bā€block. We conclude the results by demonstrating the new systems ability to resist detection both through human observation, via a survey, as well as resist computer aided analysis
    • ā€¦
    corecore