14,570 research outputs found

    Designing Robots for Care: Care Centered Value-Sensitive Design

    Get PDF
    The prospective robots in healthcare intended to be included within the conclave of the nurse-patient relationship—what I refer to as care robots—require rigorous ethical reflection to ensure their design and introduction do not impede the promotion of values and the dignity of patients at such a vulnerable and sensitive time in their lives. The ethical evaluation of care robots requires insight into the values at stake in the healthcare tradition. What’s more, given the stage of their development and lack of standards provided by the International Organization for Standardization to guide their development, ethics ought to be included into the design process of such robots. The manner in which this may be accomplished, as presented here, uses the blueprint of the Value-sensitive design approach as a means for creating a framework tailored to care contexts. Using care values as the foundational values to be integrated into a technology and using the elements in care, from the care ethics perspective, as the normative criteria, the resulting approach may be referred to as care centered value-sensitive design. The framework proposed here allows for the ethical evaluation of care robots both retrospectively and prospectively. By evaluating care robots in this way, we may ultimately ask what kind of care we, as a society, want to provide in the futur

    Healthcare Robotics

    Full text link
    Robots have the potential to be a game changer in healthcare: improving health and well-being, filling care gaps, supporting care givers, and aiding health care workers. However, before robots are able to be widely deployed, it is crucial that both the research and industrial communities work together to establish a strong evidence-base for healthcare robotics, and surmount likely adoption barriers. This article presents a broad contextualization of robots in healthcare by identifying key stakeholders, care settings, and tasks; reviewing recent advances in healthcare robotics; and outlining major challenges and opportunities to their adoption.Comment: 8 pages, Communications of the ACM, 201

    The CARESSES study protocol: testing and evaluating culturally competent socially assistive robots among older adults residing in long term care homes through a controlled experimental trial

    Get PDF
    Background : This article describes the design of an intervention study that focuses on whether and to what degree culturally competent social robots can improve health and well-being related outcomes among older adults residing long-term care homes. The trial forms the final stage of the international, multidisciplinary CARESSES project aimed at designing, developing and evaluating culturally competent robots that can assist older people according to the culture of the individual they are supporting. The importance of cultural competence has been demonstrated in previous nursing literature to be key towards improving health outcomes among patients. Method : This study employed a mixed-method, single-blind, parallel-group controlled before-and-after experimental trial design that took place in England and Japan. It aimed to recruit 45 residents of long-term care homes aged ≄65 years, possess sufficient cognitive and physical health and who self-identify with the English, Indian or Japanese culture (n = 15 each). Participants were allocated to either the experimental group, control group 1 or control group 2 (all n = 15). Those allocated to the experimental group or control group 1 received a Pepper robot programmed with the CARESSES culturally competent artificial intelligence (experimental group) or a limited version of this software (control group 1) for 18 h across 2 weeks. Participants in control group 2 did not receive a robot and continued to receive care as usual. Participants could also nominate their informal carer(s) to participate. Quantitative data collection occurred at baseline, after 1 week of use, and after 2 weeks of use with the latter time-point also including qualitative semi-structured interviews that explored their experience and perceptions further. Quantitative outcomes of interest included perceptions of robotic cultural competence, health-related quality of life, loneliness, user satisfaction, attitudes towards robots and caregiver burden. Discussion : This trial adds to the current preliminary and limited pool of evidence regarding the benefits of socially assistive robots for older adults which to date indicates considerable potential for improving outcomes. It is the first to assess whether and to what extent cultural competence carries importance in generating improvements to well-being

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Can We Agree on What Robots Should be Allowed to Do? An Exercise in Rule Selection for Ethical Care Robots

    Get PDF
    Future Care Robots (CRs) should be able to balance a patient’s, often conflicting, rights without ongoing supervision. Many of the trade-offs faced by such a robot will require a degree of moral judgment. Some progress has been made on methods to guarantee robots comply with a predefined set of ethical rules. In contrast, methods for selecting these rules are lacking. Approaches departing from existing philosophical frameworks, often do not result in implementable robotic control rules. Machine learning approaches are sensitive to biases in the training data and suffer from opacity. Here, we propose an alternative, empirical, survey-based approach to rule selection. We suggest this approach has several advantages, including transparency and legitimacy. The major challenge for this approach, however, is that a workable solution, or social compromise, has to be found: it must be possible to obtain a consistent and agreed-upon set of rules to govern robotic behavior. In this article, we present an exercise in rule selection for a hypothetical CR to assess the feasibility of our approach. We assume the role of robot developers using a survey to evaluate which robot behavior potential users deem appropriate in a practically relevant setting, i.e., patient non-compliance. We evaluate whether it is possible to find such behaviors through a consensus. Assessing a set of potential robot behaviors, we surveyed the acceptability of robot actions that potentially violate a patient’s autonomy or privacy. Our data support the empirical approach as a promising and cost-effective way to query ethical intuitions, allowing us to select behavior for the hypothetical CR

    A complementing approach for identifying ethical issues in care robotics – grounding ethics in practical use

    Get PDF
    We use a long-term study of a robotic eating-aid for disabled users to illustrate how empirical use give rise to a set of ethical issues that might be overlooked in ethic discussions based on theoretical extrapolation of the current state-of-the-art in robotics. This approach provides an important complement to the existing robot ethics by revealing new issues as well as providing actionable guidance for current and future robot design. We discuss our material in relation to the literature on robot ethics, specifically the risk of robots performing care taking tasks and thus causing increased isolation for care recipients. Our data identifies a different set of ethical issues such as independence, privacy, and identity where robotics, if carefully designed and developed, can make positive contributions

    Therapeutic Potential of Haptic TheraDrive: An Affordable Robot/Computer System for Motivating Stroke Rehabilitation

    Get PDF
    There is a need for increased opportunities for effective neurorehabilitation services for stroke survivors outside the hospital environment. Efforts to develop low-cost robot/computer therapy solutions able to be deployed in home and community rehabilitation settings have been growing. Our long-term goal is to develop a very low-cost system for stroke rehabilitation that can use commercial gaming technology and support rehabilitation with stroke survivors at all functioning levels. This paper reports the results of experiments comparing the old and new TheraDrive systems in terms of ability to assist/resist subjects and the root-mean-square (RMS) trajectory tracking error. Data demonstrate that the new system, in comparison to the original TheraDrive, produces a larger change in normalized trajectory tracking error when assistance/resistance is added to exercises and has the potential to support stroke survivors at all functioning levels

    Externalising moods and psychological states in a cloud based system to enhance a pet-robot and child’s interaction

    Get PDF
    Background:This PATRICIA research project is about using pet robots to reduce pain and anxiety in hospitalized children. The study began 2 years ago and it is believed that the advances made in this project are significant. Patients, parents, nurses, psycholo- gists, and engineers have adopted the Pleo robot, a baby dinosaur robotic pet, which works in different ways to assist children during hospitalization. Methods: Focus is spent on creating a wireless communication system with the Pleo in order to help the coordinator, who conducts therapy with the child, monitor, under- stand, and control Pleo’s behavior at any moment. This article reports how this techno- logical function is being developed and tested. Results: Wireless communication between the Pleo and an Android device is achieved. The developed Android app allows the user to obtain any state of the robot without stopping its interaction with the patient. Moreover, information is sent to a cloud, so that robot moods, states and interactions can be shared among different robots. Conclusions: Pleo attachment was successful for more than 1 month, working with children in therapy, which makes the investment capable of positive therapeutic possibilities. This technical improvement in the Pleo addresses two key issues in social robotics: needing an enhanced response to maintain the attention and engagement of the child, and using the system as a platform to collect the states of the child’s progress for clinical purposes.Peer ReviewedPostprint (published version
    • 

    corecore