6,342 research outputs found

    PseudoFuN: Deriving functional potentials of pseudogenes from integrative relationships with genes and microRNAs across 32 cancers

    Get PDF
    BACKGROUND: Long thought "relics" of evolution, not until recently have pseudogenes been of medical interest regarding regulation in cancer. Often, these regulatory roles are a direct by-product of their close sequence homology to protein-coding genes. Novel pseudogene-gene (PGG) functional associations can be identified through the integration of biomedical data, such as sequence homology, functional pathways, gene expression, pseudogene expression, and microRNA expression. However, not all of the information has been integrated, and almost all previous pseudogene studies relied on 1:1 pseudogene-parent gene relationships without leveraging other homologous genes/pseudogenes. RESULTS: We produce PGG families that expand beyond the current 1:1 paradigm. First, we construct expansive PGG databases by (i) CUDAlign graphics processing unit (GPU) accelerated local alignment of all pseudogenes to gene families (totaling 1.6 billion individual local alignments and >40,000 GPU hours) and (ii) BLAST-based assignment of pseudogenes to gene families. Second, we create an open-source web application (PseudoFuN [Pseudogene Functional Networks]) to search for integrative functional relationships of sequence homology, microRNA expression, gene expression, pseudogene expression, and gene ontology. We produce four "flavors" of CUDAlign-based databases (>462,000,000 PGG pairwise alignments and 133,770 PGG families) that can be queried and downloaded using PseudoFuN. These databases are consistent with previous 1:1 PGG annotation and also are much more powerful including millions of de novo PGG associations. For example, we find multiple known (e.g., miR-20a-PTEN-PTENP1) and novel (e.g., miR-375-SOX15-PPP4R1L) microRNA-gene-pseudogene associations in prostate cancer. PseudoFuN provides a "one stop shop" for identifying and visualizing thousands of potential regulatory relationships related to pseudogenes in The Cancer Genome Atlas cancers. CONCLUSIONS: Thousands of new PGG associations can be explored in the context of microRNA-gene-pseudogene co-expression and differential expression with a simple-to-use online tool by bioinformaticians and oncologists alike

    Large-scale and significant expression from pseudogenes in Sodalis glossinidius – a facultative bacterial endosymbiont

    Get PDF
    The majority of bacterial genomes have high coding efficiencies, but there are some genomes of intracellular bacteria that have low gene density. The genome of the endosymbiont Sodalis glossinidius contains almost 50 % pseudogenes containing mutations that putatively silence them at the genomic level. We have applied multiple ‘omic’ strategies, combining Illumina and Pacific Biosciences Single-Molecule Real-Time DNA sequencing and annotation, stranded RNA sequencing and proteome analysis to better understand the transcriptional and translational landscape of Sodalis pseudogenes, and potential mechanisms for their control. Between 53 and 74 % of the Sodalis transcriptome remains active in cell-free culture. The mean sense transcription from coding domain sequences (CDSs) is four times greater than that from pseudogenes. Comparative genomic analysis of six Illumina-sequenced Sodalis isolates from different host Glossina species shows pseudogenes make up ~40 % of the 2729 genes in the core genome, suggesting that they are stable and/or that Sodalis is a recent introduction across the genus Glossina as a facultative symbiont. These data shed further light on the importance of transcriptional and translational control in deciphering host–microbe interactions. The combination of genomics, transcriptomics and proteomics gives a multidimensional perspective for studying prokaryotic genomes with a view to elucidating evolutionary adaptation to novel environmental niches

    Systematic identification of pseudogenes through whole genome expression evidence profiling

    Get PDF
    The identification of pseudogenes is an integral and significant part of the genome annotation because of their abundance and their impact on the experimental analysis of functional genes. Most of the computational annotation systems are not optimized for systematic pseudogene recognition, often annotating pseudogenes as functional genes, and users then propagate these errors to subsequent analyses and interpretations. In order to validate gene annotations and to identify pseudogenes that are potentially mis-annotated, we developed a novel approach based on whole genome profiling of existing transcript and protein sequences. This method has two important features: (i) equally detects both processed and non-processed pseudogenes and (ii) can identify transcribed pseudogenes. Applying this method to the human Ensembl gene predictions, we discovered that 2011 (9% of total) Ensembl genes in the categories of known and novel might be pseudogenes based on expression evidence. Of these, 1200 genes are found to have no existing evidence of transcription, and 811 genes are found with transcription evidence but contain significant translation disruption. Approximately 40% of the 2011 identified pseudogenes presented a multi-exon structure, representing non-processed pseudogenes. We have demonstrated the power of whole genome profiling of expression sequences to improve the accuracy of gene annotations

    Pseudogene.org: a comprehensive database and comparison platform for pseudogene annotation

    Get PDF
    The Pseudogene.org knowledgebase serves as a comprehensive repository for pseudogene annotation. The definition of a pseudogene varies within the literature, resulting in significantly different approaches to the problem of identification. Consequently, it is difficult to maintain a consistent collection of pseudogenes in detail necessary for their effective use. Our database is designed to address this issue. It integrates a variety of heterogeneous resources and supports a subset structure that highlights specific groups of pseudogenes that are of interest to the research community. Tools are provided for the comparison of sets and the creation of layered set unions, enabling researchers to derive a current ‘consensus’ set of pseudogenes. Additional features include versatile search, the capacity for robust interaction with other databases, the ability to reconstruct older versions of the database (accounting for changing genome builds) and an underlying object-oriented interface designed for researchers with a minimal knowledge of programming. At the present time, the database contains more than 100 000 pseudogenes spanning 64 prokaryote and 11 eukaryote genomes, including a collection of human annotations compiled from 16 sources

    Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pseudogenes provide a record of the molecular evolution of genes. As glycolysis is such a highly conserved and fundamental metabolic pathway, the pseudogenes of glycolytic enzymes comprise a standardized genomic measuring stick and an ideal platform for studying molecular evolution. One of the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), has already been noted to have one of the largest numbers of associated pseudogenes, among all proteins.</p> <p>Results</p> <p>We assembled the first comprehensive catalog of the processed and duplicated pseudogenes of glycolytic enzymes in many vertebrate model-organism genomes, including human, chimpanzee, mouse, rat, chicken, zebrafish, pufferfish, fruitfly, and worm (available at <url>http://pseudogene.org/glycolysis/</url>). We found that glycolytic pseudogenes are predominantly processed, i.e. retrotransposed from the mRNA of their parent genes. Although each glycolytic enzyme plays a unique role, GAPDH has by far the most pseudogenes, perhaps reflecting its large number of non-glycolytic functions or its possession of a particularly retrotranspositionally active sub-sequence. Furthermore, the number of GAPDH pseudogenes varies significantly among the genomes we studied: none in zebrafish, pufferfish, fruitfly, and worm, 1 in chicken, 50 in chimpanzee, 62 in human, 331 in mouse, and 364 in rat. Next, we developed a simple method of identifying conserved syntenic blocks (consistently applicable to the wide range of organisms in the study) by using orthologous genes as anchors delimiting a conserved block between a pair of genomes. This approach showed that few glycolytic pseudogenes are shared between primate and rodent lineages. Finally, by estimating pseudogene ages using Kimura's two-parameter model of nucleotide substitution, we found evidence for bursts of retrotranspositional activity approximately 42, 36, and 26 million years ago in the human, mouse, and rat lineages, respectively.</p> <p>Conclusion</p> <p>Overall, we performed a consistent analysis of one group of pseudogenes across multiple genomes, finding evidence that most of them were created within the last 50 million years, subsequent to the divergence of rodent and primate lineages.</p

    Identification and Analysis of Genes and Pseudogenes within Duplicated Regions in the Human and Mouse Genomes

    Get PDF
    The identification and classification of genes and pseudogenes in duplicated regions still constitutes a challenge for standard automated genome annotation procedures. Using an integrated homology and orthology analysis independent of current gene annotation, we have identified 9,484 and 9,017 gene duplicates in human and mouse, respectively. On the basis of the integrity of their coding regions, we have classified them into functional and inactive duplicates, allowing us to define the first consistent and comprehensive collection of 1,811 human and 1,581 mouse unprocessed pseudogenes. Furthermore, of the total of 14,172 human and mouse duplicates predicted to be functional genes, as many as 420 are not included in current reference gene databases and therefore correspond to likely novel mammalian genes. Some of these correspond to partial duplicates with less than half of the length of the original source genes, yet they are conserved and syntenic among different mammalian lineages. The genes and unprocessed pseudogenes obtained here will enable further studies on the mechanisms involved in gene duplication as well as of the fate of duplicated genes
    corecore