279,531 research outputs found

    Parallel ACO with a Ring Neighborhood for Dynamic TSP

    Full text link
    The current paper introduces a new parallel computing technique based on ant colony optimization for a dynamic routing problem. In the dynamic traveling salesman problem the distances between cities as travel times are no longer fixed. The new technique uses a parallel model for a problem variant that allows a slight movement of nodes within their Neighborhoods. The algorithm is tested with success on several large data sets.Comment: 8 pages, 1 figure; accepted J. Information Technology Researc

    Three dimensional numerical relativity: the evolution of black holes

    Full text link
    We report on a new 3D numerical code designed to solve the Einstein equations for general vacuum spacetimes. This code is based on the standard 3+1 approach using cartesian coordinates. We discuss the numerical techniques used in developing this code, and its performance on massively parallel and vector supercomputers. As a test case, we present evolutions for the first 3D black hole spacetimes. We identify a number of difficulties in evolving 3D black holes and suggest approaches to overcome them. We show how special treatment of the conformal factor can lead to more accurate evolution, and discuss techniques we developed to handle black hole spacetimes in the absence of symmetries. Many different slicing conditions are tested, including geodesic, maximal, and various algebraic conditions on the lapse. With current resolutions, limited by computer memory sizes, we show that with certain lapse conditions we can evolve the black hole to about t=50Mt=50M, where MM is the black hole mass. Comparisons are made with results obtained by evolving spherical initial black hole data sets with a 1D spherically symmetric code. We also demonstrate that an ``apparent horizon locking shift'' can be used to prevent the development of large gradients in the metric functions that result from singularity avoiding time slicings. We compute the mass of the apparent horizon in these spacetimes, and find that in many cases it can be conserved to within about 5\% throughout the evolution with our techniques and current resolution.Comment: 35 pages, LaTeX with RevTeX 3.0 macros. 27 postscript figures taking 7 MB of space, uuencoded and gz-compressed into a 2MB uufile. Also available at http://jean-luc.ncsa.uiuc.edu/Papers/ and mpeg simulations at http://jean-luc.ncsa.uiuc.edu/Movies/ Submitted to Physical Review

    A Parallel Divide-and-Conquer based Evolutionary Algorithm for Large-scale Optimization

    Full text link
    Large-scale optimization problems that involve thousands of decision variables have extensively arisen from various industrial areas. As a powerful optimization tool for many real-world applications, evolutionary algorithms (EAs) fail to solve the emerging large-scale problems both effectively and efficiently. In this paper, we propose a novel Divide-and-Conquer (DC) based EA that can not only produce high-quality solution by solving sub-problems separately, but also highly utilizes the power of parallel computing by solving the sub-problems simultaneously. Existing DC-based EAs that were deemed to enjoy the same advantages of the proposed algorithm, are shown to be practically incompatible with the parallel computing scheme, unless some trade-offs are made by compromising the solution quality.Comment: 12 pages, 0 figure

    An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver

    Full text link
    We propose an efficient algorithm for the immersed boundary method on distributed-memory architectures, with the computational complexity of a completely explicit method and excellent parallel scaling. The algorithm utilizes the pseudo-compressibility method recently proposed by Guermond and Minev [Comptes Rendus Mathematique, 348:581-585, 2010] that uses a directional splitting strategy to discretize the incompressible Navier-Stokes equations, thereby reducing the linear systems to a series of one-dimensional tridiagonal systems. We perform numerical simulations of several fluid-structure interaction problems in two and three dimensions and study the accuracy and convergence rates of the proposed algorithm. For these problems, we compare the proposed algorithm against other second-order projection-based fluid solvers. Lastly, the strong and weak scaling properties of the proposed algorithm are investigated

    Biology of Applied Digital Ecosystems

    Full text link
    A primary motivation for our research in Digital Ecosystems is the desire to exploit the self-organising properties of biological ecosystems. Ecosystems are thought to be robust, scalable architectures that can automatically solve complex, dynamic problems. However, the biological processes that contribute to these properties have not been made explicit in Digital Ecosystems research. Here, we discuss how biological properties contribute to the self-organising features of biological ecosystems, including population dynamics, evolution, a complex dynamic environment, and spatial distributions for generating local interactions. The potential for exploiting these properties in artificial systems is then considered. We suggest that several key features of biological ecosystems have not been fully explored in existing digital ecosystems, and discuss how mimicking these features may assist in developing robust, scalable self-organising architectures. An example architecture, the Digital Ecosystem, is considered in detail. The Digital Ecosystem is then measured experimentally through simulations, with measures originating from theoretical ecology, to confirm its likeness to a biological ecosystem. Including the responsiveness to requests for applications from the user base, as a measure of the 'ecological succession' (development).Comment: 9 pages, 4 figure, conferenc

    Simulation of reaction-diffusion processes in three dimensions using CUDA

    Get PDF
    Numerical solution of reaction-diffusion equations in three dimensions is one of the most challenging applied mathematical problems. Since these simulations are very time consuming, any ideas and strategies aiming at the reduction of CPU time are important topics of research. A general and robust idea is the parallelization of source codes/programs. Recently, the technological development of graphics hardware created a possibility to use desktop video cards to solve numerically intensive problems. We present a powerful parallel computing framework to solve reaction-diffusion equations numerically using the Graphics Processing Units (GPUs) with CUDA. Four different reaction-diffusion problems, (i) diffusion of chemically inert compound, (ii) Turing pattern formation, (iii) phase separation in the wake of a moving diffusion front and (iv) air pollution dispersion were solved, and additionally both the Shared method and the Moving Tiles method were tested. Our results show that parallel implementation achieves typical acceleration values in the order of 5-40 times compared to CPU using a single-threaded implementation on a 2.8 GHz desktop computer.Comment: 8 figures, 5 table

    Scientific discovery reloaded

    Get PDF
    The way scientific discovery has been conceptualized has changed drastically in the last few decades: its relation to logic, inference, methods, and evolution has been deeply reloaded. The ‘philosophical matrix’ moulded by logical empiricism and analytical tradition has been challenged by the ‘friends of discovery’, who opened up the way to a rational investigation of discovery. This has produced not only new theories of discovery (like the deductive, cognitive, and evolutionary), but also new ways of practicing it in a rational and more systematic way. Ampliative rules, methods, heuristic procedures and even a logic of discovery have been investigated, extracted, reconstructed and refined. The outcome is a ‘scientific discovery revolution’: not only a new way of looking at discovery, but also a construction of tools that can guide us to discover something new. This is a very important contribution of philosophy of science to science, as it puts the former in a position not only to interpret what scientists do, but also to provide and improve tools that they can employ in their activity
    corecore