10,135 research outputs found

    Peer - Mediated Distributed Knowledge Management

    Get PDF
    Distributed Knowledge Management is an approach to knowledge management based on the principle that the multiplicity (and heterogeneity) of perspectives within complex organizations is not be viewed as an obstacle to knowledge exploitation, but rather as an opportunity that can foster innovation and creativity. Despite a wide agreement on this principle, most current KM systems are based on the idea that all perspectival aspects of knowledge should be eliminated in favor of an objective and general representation of knowledge. In this paper we propose a peer-to-peer architecture (called KEx), which embodies the principle above in a quite straightforward way: (i) each peer (called a K-peer) provides all the services needed to create and organize "local" knowledge from an individual's or a group's perspective, and (ii) social structures and protocols of meaning negotiation are introduced to achieve semantic coordination among autonomous peers (e.g., when searching documents from other K-peers). A first version of the system, called KEx, is imple-mented as a knowledge exchange level on top of JXTA

    Supporting Change-Aware Semantic Web Services

    Get PDF
    The Semantic Web is not only evolving into a provider of structured meaningful content and knowledge representation, but also into a provider of services. While most of these services support external users of the SW, we focus on a vital service within the SW – change management and adaptation. Change is a ubiquitous feature of the SW. In this paper, we propose a service architecture that embraces and utilises change to provide higher quality services. We introduce pilot implementations of two supporting services within this architecture

    Challenges in Bridging Social Semantics and Formal Semantics on the Web

    Get PDF
    This paper describes several results of Wimmics, a research lab which names stands for: web-instrumented man-machine interactions, communities, and semantics. The approaches introduced here rely on graph-oriented knowledge representation, reasoning and operationalization to model and support actors, actions and interactions in web-based epistemic communities. The re-search results are applied to support and foster interactions in online communities and manage their resources

    An Integrated Semantic Web Service Discovery and Composition Framework

    Full text link
    In this paper we present a theoretical analysis of graph-based service composition in terms of its dependency with service discovery. Driven by this analysis we define a composition framework by means of integration with fine-grained I/O service discovery that enables the generation of a graph-based composition which contains the set of services that are semantically relevant for an input-output request. The proposed framework also includes an optimal composition search algorithm to extract the best composition from the graph minimising the length and the number of services, and different graph optimisations to improve the scalability of the system. A practical implementation used for the empirical analysis is also provided. This analysis proves the scalability and flexibility of our proposal and provides insights on how integrated composition systems can be designed in order to achieve good performance in real scenarios for the Web.Comment: Accepted to appear in IEEE Transactions on Services Computing 201

    Reliability of Mobile Agents for Reliable Service Discovery Protocol in MANET

    Full text link
    Recently mobile agents are used to discover services in mobile ad-hoc network (MANET) where agents travel through the network, collecting and sometimes spreading the dynamically changing service information. But it is important to investigate how reliable the agents are for this application as the dependability issues(reliability and availability) of MANET are highly affected by its dynamic nature.The complexity of underlying MANET makes it hard to obtain the route reliability of the mobile agent systems (MAS); instead we estimate it using Monte Carlo simulation. Thus an algorithm for estimating the task route reliability of MAS (deployed for discovering services) is proposed, that takes into account the effect of node mobility in MANET. That mobility pattern of the nodes affects the MAS performance is also shown by considering different mobility models. Multipath propagation effect of radio signal is considered to decide link existence. Transient link errors are also considered. Finally we propose a metric to calculate the reliability of service discovery protocol and see how MAS performance affects the protocol reliability. The experimental results show the robustness of the proposed algorithm. Here the optimum value of network bandwidth (needed to support the agents) is calculated for our application. However the reliability of MAS is highly dependent on link failure probability

    Agent-based semantic composition of Web services using distributed description logics

    Get PDF
    International audienceAn important research challenge consists in composing web services in an automatic and distributed manner on a large scale. Indeed, most queries can not be satisfiable by one service and must be processed by composing several services. Each web service is often written by different designers and is described using the terms of their own ontology. Therefore, the composition process needs to deal with a variety of heterogeneous ontologies. In order to tackle this challenge, we propose an approach using Distributed Description Logics (DDL) to achieve the semantic composition of web services. DDL allows one to make semantic connections between ontologies and thus web services, as well as to reason to get a semantic composition of web services

    Interests Diffusion in Social Networks

    Full text link
    Understanding cultural phenomena on Social Networks (SNs) and exploiting the implicit knowledge about their members is attracting the interest of different research communities both from the academic and the business side. The community of complexity science is devoting significant efforts to define laws, models, and theories, which, based on acquired knowledge, are able to predict future observations (e.g. success of a product). In the mean time, the semantic web community aims at engineering a new generation of advanced services by defining constructs, models and methods, adding a semantic layer to SNs. In this context, a leapfrog is expected to come from a hybrid approach merging the disciplines above. Along this line, this work focuses on the propagation of individual interests in social networks. The proposed framework consists of the following main components: a method to gather information about the members of the social networks; methods to perform some semantic analysis of the Domain of Interest; a procedure to infer members' interests; and an interests evolution theory to predict how the interests propagate in the network. As a result, one achieves an analytic tool to measure individual features, such as members' susceptibilities and authorities. Although the approach applies to any type of social network, here it is has been tested against the computer science research community. The DBLP (Digital Bibliography and Library Project) database has been elected as test-case since it provides the most comprehensive list of scientific production in this field.Comment: 30 pages 13 figs 4 table
    corecore