966 research outputs found

    A Recommendation System for Shared-Use Mobility Service through Data Extracted from Online Social Networks

    Get PDF
    In recent years, the shared mobility service hasincreased in many countries across the world because its low cost and several shared-use mobility applications on mobile devices. Commonly, if a ride is shared between people with similar preferences, users likely feel both more comfortable and safer.In this context, the main goal of this article is to classify userswith similar preferences, in automatic manner, to improve user’s quality of experience in ridesharing service. To obtain initial data, subjective tests are carried out using questionnaires and their results are used to determine ridesharing profiles. Then, some basic user profile information is extracted from Online Social Networks (OSN) to determine an user profile based on preferences in ridesharing service. The user profile classification is performed through different machine learning algorithms, which use as input the data extracted from OSN. Two case studies of shared-mobility are treated, (i) sharing a ride with a passenger with a similar hobby [2], and (ii) sharing a ride with people thatsupport an opposite football teams. In this work, a novel contribution is the use of Hybrid Discriminative Restricted Boltzmann Machines (HDRBM) technique for classification, which results overcomes other algorithms, such as Random Forest, SVM and DRBM. The experimental results presented a correctly classified instance of 96:9% and 97:3% for the cases of sharing a ride with people with similar hobby and support different football team, respectively. Finally, a Recommendation System (RS) is proposed, which efficiency is compared with a basic RS, obtaining a Pearson correlation coefficient of 0:97 and 0:79, respectively

    Understanding consumer demand for new transport technologies and services, and implications for the future of mobility

    Full text link
    The transport sector is witnessing unprecedented levels of disruption. Privately owned cars that operate on internal combustion engines have been the dominant modes of passenger transport for much of the last century. However, recent advances in transport technologies and services, such as the development of autonomous vehicles, the emergence of shared mobility services, and the commercialization of alternative fuel vehicle technologies, promise to revolutionise how humans travel. The implications are profound: some have predicted the end of private car dependent Western societies, others have portended greater suburbanization than has ever been observed before. If transport systems are to fulfil current and future needs of different subpopulations, and satisfy short and long-term societal objectives, it is imperative that we comprehend the many factors that shape individual behaviour. This chapter introduces the technologies and services most likely to disrupt prevailing practices in the transport sector. We review past studies that have examined current and future demand for these new technologies and services, and their likely short and long-term impacts on extant mobility patterns. We conclude with a summary of what these new technologies and services might mean for the future of mobility.Comment: 15 pages, 0 figures, book chapte

    INQUIRIES IN INTELLIGENT INFORMATION SYSTEMS: NEW TRAJECTORIES AND PARADIGMS

    Get PDF
    Rapid Digital transformation drives organizations to continually revitalize their business models so organizations can excel in such aggressive global competition. Intelligent Information Systems (IIS) have enabled organizations to achieve many strategic and market leverages. Despite the increasing intelligence competencies offered by IIS, they are still limited in many cognitive functions. Elevating the cognitive competencies offered by IIS would impact the organizational strategic positions. With the advent of Deep Learning (DL), IoT, and Edge Computing, IISs has witnessed a leap in their intelligence competencies. DL has been applied to many business areas and many industries such as real estate and manufacturing. Moreover, despite the complexity of DL models, many research dedicated efforts to apply DL to limited computational devices, such as IoTs. Applying deep learning for IoTs will turn everyday devices into intelligent interactive assistants. IISs suffer from many challenges that affect their service quality, process quality, and information quality. These challenges affected, in turn, user acceptance in terms of satisfaction, use, and trust. Moreover, Information Systems (IS) has conducted very little research on IIS development and the foreseeable contribution for the new paradigms to address IIS challenges. Therefore, this research aims to investigate how the employment of new AI paradigms would enhance the overall quality and consequently user acceptance of IIS. This research employs different AI paradigms to develop two different IIS. The first system uses deep learning, edge computing, and IoT to develop scene-aware ridesharing mentoring. The first developed system enhances the efficiency, privacy, and responsiveness of current ridesharing monitoring solutions. The second system aims to enhance the real estate searching process by formulating the search problem as a Multi-criteria decision. The system also allows users to filter properties based on their degree of damage, where a deep learning network allocates damages in 12 each real estate image. The system enhances real-estate website service quality by enhancing flexibility, relevancy, and efficiency. The research contributes to the Information Systems research by developing two Design Science artifacts. Both artifacts are adding to the IS knowledge base in terms of integrating different components, measurements, and techniques coherently and logically to effectively address important issues in IIS. The research also adds to the IS environment by addressing important business requirements that current methodologies and paradigms are not fulfilled. The research also highlights that most IIS overlook important design guidelines due to the lack of relevant evaluation metrics for different business problems

    AI for Explaining Decisions in Multi-Agent Environments

    Full text link
    Explanation is necessary for humans to understand and accept decisions made by an AI system when the system's goal is known. It is even more important when the AI system makes decisions in multi-agent environments where the human does not know the systems' goals since they may depend on other agents' preferences. In such situations, explanations should aim to increase user satisfaction, taking into account the system's decision, the user's and the other agents' preferences, the environment settings and properties such as fairness, envy and privacy. Generating explanations that will increase user satisfaction is very challenging; to this end, we propose a new research direction: xMASE. We then review the state of the art and discuss research directions towards efficient methodologies and algorithms for generating explanations that will increase users' satisfaction from AI system's decisions in multi-agent environments.Comment: This paper has been submitted to the Blue Sky Track of the AAAI 2020 conference. At the time of submission, it is under review. The tentative notification date will be November 10, 2019. Current version: Name of first author had been added in metadat

    Mobility on Demand in the United States

    Get PDF
    The growth of shared mobility services and enabling technologies, such as smartphone apps, is contributing to the commodification and aggregation of transportation services. This chapter reviews terms and definitions related to Mobility on Demand (MOD) and Mobility as a Service (MaaS), the mobility marketplace, stakeholders, and enablers. This chapter also reviews the U.S. Department of Transportation’s MOD Sandbox Program, including common opportunities and challenges, partnerships, and case studies for employing on-demand mobility pilots and programs. The chapter concludes with a discussion of vehicle automation and on-demand mobility including pilot projects and the potential transformative impacts of shared automated vehicles on parking, land use, and the built environment

    Sharing economy and socio-economic transitions: an application of the multi-level perspective on a case study of carpooling in the USA (1970-2010)

    Get PDF
    The study deals with the emerging concept of sharing economy using the development of carpooling as example. It is based on the multi-level perspective framework, developed by Frank Geels, which is designed to explain and analyze processes of novel technology development. The present paper analyzes the new institution, carpooling, through the lens of this framework in order to understand its potential to be a landscape-changing innovation. This case study also attempts to illustrate how the multi-level perspective can be used to analyze not only technological innovations, but also novel ways of doing business, which can arguably be viewed as radical innovations on their own. The aim is thus to find out whether the emergence of carpooling follows the same patterns and shows the same features as emergence of conventional technological radical innovations
    corecore