6,786 research outputs found

    A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles

    Full text link
    [EN] Electricity consumption patterns reveal energy demand behaviors and enable strategY implementation to increase efficiency using monitoring systems. However, incorrect patterns can be obtained when the time-series components of electricity demand are not considered. Hence, this research proposes a new method for handling time-series components that significantly improves the ability to obtain patterns and detect anomalies in electrical consumption profiles. Patterns are found using the proposed method and two widespread methods for handling the time-series components, in order to compare the results. Through this study, the conditions that electricity demand data must meet for making the time-series analysis useful are established. Finally, one year of real electricity consumption is analyzed for two different cases to evaluate the effect of time-series treatment in the detection of anomalies. The proposed method differentiates between periods of high or low energy demand, identifying contextual anomalies. The results indicate that it is possible to reduce time and effort involved in data analysis, and improve the reliability of monitoring systems, without adding complex procedures.Serrano-Guerrero, X.; Escrivá-Escrivá, G.; Luna-Romero, S.; Clairand, J. (2020). A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles. Energies. 13(5):1-23. https://doi.org/10.3390/en13051046S123135Hong, T., Yang, L., Hill, D., & Feng, W. (2014). Data and analytics to inform energy retrofit of high performance buildings. Applied Energy, 126, 90-106. doi:10.1016/j.apenergy.2014.03.052Ogunjuyigbe, A. S. O., Ayodele, T. R., & Akinola, O. A. (2017). User satisfaction-induced demand side load management in residential buildings with user budget constraint. Applied Energy, 187, 352-366. doi:10.1016/j.apenergy.2016.11.071Huang, Y., Sun, Y., & Yi, S. (2018). Static and Dynamic Networking of Smart Meters Based on the Characteristics of the Electricity Usage Information. Energies, 11(6), 1532. doi:10.3390/en11061532Lin, R., Ye, Z., & Zhao, Y. (2019). OPEC: Daily Load Data Analysis Based on Optimized Evolutionary Clustering. Energies, 12(14), 2668. doi:10.3390/en12142668Hunt, L. C., Judge, G., & Ninomiya, Y. (2003). Underlying trends and seasonality in UK energy demand: a sectoral analysis. Energy Economics, 25(1), 93-118. doi:10.1016/s0140-9883(02)00072-5Serrano-Guerrero, X., Escrivá-Escrivá, G., & Roldán-Blay, C. (2018). Statistical methodology to assess changes in the electrical consumption profile of buildings. Energy and Buildings, 164, 99-108. doi:10.1016/j.enbuild.2017.12.059Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection. ACM Computing Surveys, 41(3), 1-58. doi:10.1145/1541880.1541882Escrivá-Escrivá, G., Álvarez-Bel, C., Roldán-Blay, C., & Alcázar-Ortega, M. (2011). New artificial neural network prediction method for electrical consumption forecasting based on building end-uses. Energy and Buildings, 43(11), 3112-3119. doi:10.1016/j.enbuild.2011.08.008Serrano-Guerrero, X., Prieto-Galarza, R., Huilcatanda, E., Cabrera-Zeas, J., & Escriva-Escriva, G. (2017). Election of variables and short-term forecasting of electricity demand based on backpropagation artificial neural networks. 2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC). doi:10.1109/ropec.2017.8261630Jain, R. K., Smith, K. M., Culligan, P. J., & Taylor, J. E. (2014). Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy. Applied Energy, 123, 168-178. doi:10.1016/j.apenergy.2014.02.057Singh, S., & Yassine, A. (2018). Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting. Energies, 11(2), 452. doi:10.3390/en11020452Jota, P. R. S., Silva, V. R. B., & Jota, F. G. (2011). Building load management using cluster and statistical analyses. International Journal of Electrical Power & Energy Systems, 33(8), 1498-1505. doi:10.1016/j.ijepes.2011.06.034Shareef, H., Ahmed, M. S., Mohamed, A., & Al Hassan, E. (2018). Review on Home Energy Management System Considering Demand Responses, Smart Technologies, and Intelligent Controllers. IEEE Access, 6, 24498-24509. doi:10.1109/access.2018.2831917Crespo Cuaresma, J., Hlouskova, J., Kossmeier, S., & Obersteiner, M. (2004). Forecasting electricity spot-prices using linear univariate time-series models. Applied Energy, 77(1), 87-106. doi:10.1016/s0306-2619(03)00096-5Janczura, J., Trück, S., Weron, R., & Wolff, R. C. (2013). Identifying spikes and seasonal components in electricity spot price data: A guide to robust modeling. Energy Economics, 38, 96-110. doi:10.1016/j.eneco.2013.03.013Angelos, E. W. S., Saavedra, O. R., Cortés, O. A. C., & de Souza, A. N. (2011). Detection and Identification of Abnormalities in Customer Consumptions in Power Distribution Systems. IEEE Transactions on Power Delivery, 26(4), 2436-2442. doi:10.1109/tpwrd.2011.2161621Milton, M.-A., Pedro, C.-O., Xavier, S.-G., & Guillermo, E.-E. (2018). Characterization and Classification of Daily Electricity Consumption Profiles: Shape Factors and k-Means Clustering Technique. E3S Web of Conferences, 64, 08004. doi:10.1051/e3sconf/20186408004Chicco, G. (2012). Overview and performance assessment of the clustering methods for electrical load pattern grouping. Energy, 42(1), 68-80. doi:10.1016/j.energy.2011.12.031Seem, J. E. (2005). Pattern recognition algorithm for determining days of the week with similar energy consumption profiles. Energy and Buildings, 37(2), 127-139. doi:10.1016/j.enbuild.2004.04.004Seem, J. E. (2007). Using intelligent data analysis to detect abnormal energy consumption in buildings. Energy and Buildings, 39(1), 52-58. doi:10.1016/j.enbuild.2006.03.033Li, X., Bowers, C. P., & Schnier, T. (2010). Classification of Energy Consumption in Buildings With Outlier Detection. IEEE Transactions on Industrial Electronics, 57(11), 3639-3644. doi:10.1109/tie.2009.2027926Capozzoli, A., Piscitelli, M. S., Brandi, S., Grassi, D., & Chicco, G. (2018). Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings. Energy, 157, 336-352. doi:10.1016/j.energy.2018.05.127Jokar, P., Arianpoo, N., & Leung, V. C. M. (2016). Electricity Theft Detection in AMI Using Customers’ Consumption Patterns. IEEE Transactions on Smart Grid, 7(1), 216-226. doi:10.1109/tsg.2015.2425222Fenza, G., Gallo, M., & Loia, V. (2019). Drift-Aware Methodology for Anomaly Detection in Smart Grid. IEEE Access, 7, 9645-9657. doi:10.1109/access.2019.2891315Araya, D. B., Grolinger, K., ElYamany, H. F., Capretz, M. A. M., & Bitsuamlak, G. (2017). An ensemble learning framework for anomaly detection in building energy consumption. Energy and Buildings, 144, 191-206. doi:10.1016/j.enbuild.2017.02.058Hayes, M. A., & Capretz, M. A. (2015). Contextual anomaly detection framework for big sensor data. Journal of Big Data, 2(1). doi:10.1186/s40537-014-0011-yCui, W., & Wang, H. (2017). A New Anomaly Detection System for School Electricity Consumption Data. Information, 8(4), 151. doi:10.3390/info8040151Fan, C., Xiao, F., Zhao, Y., & Wang, J. (2018). Analytical investigation of autoencoder-based methods for unsupervised anomaly detection in building energy data. Applied Energy, 211, 1123-1135. doi:10.1016/j.apenergy.2017.12.005Cai, H., Shen, S., Lin, Q., Li, X., & Xiao, H. (2019). Predicting the Energy Consumption of Residential Buildings for Regional Electricity Supply-Side and Demand-Side Management. IEEE Access, 7, 30386-30397. doi:10.1109/access.2019.2901257Khan, I., Huang, J. Z., Masud, M. A., & Jiang, Q. (2016). Segmentation of Factories on Electricity Consumption Behaviors Using Load Profile Data. IEEE Access, 4, 8394-8406. doi:10.1109/access.2016.2619898Al-Jarrah, O. Y., Al-Hammadi, Y., Yoo, P. D., & Muhaidat, S. (2017). Multi-Layered Clustering for Power Consumption Profiling in Smart Grids. IEEE Access, 5, 18459-18468. doi:10.1109/access.2017.2712258Park, K.-J., & Son, S.-Y. (2019). A Novel Load Image Profile-Based Electricity Load Clustering Methodology. IEEE Access, 7, 59048-59058. doi:10.1109/access.2019.2914216Serrano-Guerrero, X., Siavichay, L.-F., Clairand, J.-M., & Escrivá-Escrivá, G. (2019). Forecasting Building Electric Consumption Patterns Through Statistical Methods. Advances in Emerging Trends and Technologies, 164-175. doi:10.1007/978-3-030-32033-1_16Li, Y., Zhang, H., Liang, X., & Huang, B. (2019). Event-Triggered-Based Distributed Cooperative Energy Management for Multienergy Systems. IEEE Transactions on Industrial Informatics, 15(4), 2008-2022. doi:10.1109/tii.2018.2862436Khalid, A., Javaid, N., Guizani, M., Alhussein, M., Aurangzeb, K., & Ilahi, M. (2018). Towards Dynamic Coordination Among Home Appliances Using Multi-Objective Energy Optimization for Demand Side Management in Smart Buildings. IEEE Access, 6, 19509-19529. doi:10.1109/access.2018.2791546Borovkova, S., & Geman, H. (2006). Analysis and Modelling of Electricity Futures Prices. Studies in Nonlinear Dynamics & Econometrics, 10(3). doi:10.2202/1558-3708.137

    The Challenge of Non-Technical Loss Detection using Artificial Intelligence: A Survey

    Get PDF
    Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in electrical engineering and computer science. NTLs cause significant harm to the economy, as in some countries they may range up to 40% of the total electricity distributed. The predominant research direction is employing artificial intelligence to predict whether a customer causes NTL. This paper first provides an overview of how NTLs are defined and their impact on economies, which include loss of revenue and profit of electricity providers and decrease of the stability and reliability of electrical power grids. It then surveys the state-of-the-art research efforts in a up-to-date and comprehensive review of algorithms, features and data sets used. It finally identifies the key scientific and engineering challenges in NTL detection and suggests how they could be addressed in the future

    Is Big Data Sufficient for a Reliable Detection of Non-Technical Losses?

    Get PDF
    Non-technical losses (NTL) occur during the distribution of electricity in power grids and include, but are not limited to, electricity theft and faulty meters. In emerging countries, they may range up to 40% of the total electricity distributed. In order to detect NTLs, machine learning methods are used that learn irregular consumption patterns from customer data and inspection results. The Big Data paradigm followed in modern machine learning reflects the desire of deriving better conclusions from simply analyzing more data, without the necessity of looking at theory and models. However, the sample of inspected customers may be biased, i.e. it does not represent the population of all customers. As a consequence, machine learning models trained on these inspection results are biased as well and therefore lead to unreliable predictions of whether customers cause NTL or not. In machine learning, this issue is called covariate shift and has not been addressed in the literature on NTL detection yet. In this work, we present a novel framework for quantifying and visualizing covariate shift. We apply it to a commercial data set from Brazil that consists of 3.6M customers and 820K inspection results. We show that some features have a stronger covariate shift than others, making predictions less reliable. In particular, previous inspections were focused on certain neighborhoods or customer classes and that they were not sufficiently spread among the population of customers. This framework is about to be deployed in a commercial product for NTL detection.Comment: Proceedings of the 19th International Conference on Intelligent System Applications to Power Systems (ISAP 2017

    Ranking Volatility in Building Energy Consumption Using Ensemble Learning and Information Entropy

    Get PDF
    Given the rise in building energy consumption and demand worldwide, energy inefficiency detection has become extremely important. A significant portion of the energy used in commercial buildings is wasted as a result of poor maintenance, degradation or improperly controlled equipment. Most facilities employ sensors to track energy consumption across multiple buildings. Smart fault detection and diagnostic systems use various anomaly detection techniques to discover point anomalies in consumption. While these systems work reasonably well in detecting equipment anomalies over short-term intervals, further exploration is needed in finding methods that consider long-term consumption to detect anomalous buildings. This paper presents a novel approach for a multi-building campus to rank and visualize the long-term volatility of building consumption. This allows for the optimal allocation of limited time and resources for the detection and resolution of energy waste. The proposed method first classifies daily consumption into 5 classes using an ensemble learner and then calculates the information entropy on the resulting classification set to determine volatility. The ensemble learner receives input from a K-Nearest Neighbor classifier, a Random Forest classifier and an Artificial Neural Network. In general, buildings are expected to keep the same energy profile over time, all else being equal. Buildings that frequently change energy profiles are ranked and flagged by the system for review, which would call for the next step to reduce waste and costs and to increase the sustainability of buildings. Data on energy consumption for 132 buildings is obtained from energy management at the Georgia Institute of Technology. Experimental results show the effectiveness of the proposed approach

    Artificial Intelligence based Anomaly Detection of Energy Consumption in Buildings: A Review, Current Trends and New Perspectives

    Get PDF
    Enormous amounts of data are being produced everyday by sub-meters and smart sensors installed in residential buildings. If leveraged properly, that data could assist end-users, energy producers and utility companies in detecting anomalous power consumption and understanding the causes of each anomaly. Therefore, anomaly detection could stop a minor problem becoming overwhelming. Moreover, it will aid in better decision-making to reduce wasted energy and promote sustainable and energy efficient behavior. In this regard, this paper is an in-depth review of existing anomaly detection frameworks for building energy consumption based on artificial intelligence. Specifically, an extensive survey is presented, in which a comprehensive taxonomy is introduced to classify existing algorithms based on different modules and parameters adopted, such as machine learning algorithms, feature extraction approaches, anomaly detection levels, computing platforms and application scenarios. To the best of the authors' knowledge, this is the first review article that discusses anomaly detection in building energy consumption. Moving forward, important findings along with domain-specific problems, difficulties and challenges that remain unresolved are thoroughly discussed, including the absence of: (i) precise definitions of anomalous power consumption, (ii) annotated datasets, (iii) unified metrics to assess the performance of existing solutions, (iv) platforms for reproducibility and (v) privacy-preservation. Following, insights about current research trends are discussed to widen the applications and effectiveness of the anomaly detection technology before deriving future directions attracting significant attention. This article serves as a comprehensive reference to understand the current technological progress in anomaly detection of energy consumption based on artificial intelligence.Comment: 11 Figures, 3 Table
    corecore