1,443 research outputs found

    Overview of crowd simulation in computer graphics

    Get PDF
    High-powered technology use computer graphics in education, entertainment, games, simulation, and virtual heritage applications has led it to become an important area of research. In simulation, according to Tecchia et al. (2002), it is important to create an interactive, complex, and realistic virtual world so that the user can have an immersive experience during navigation through the world. As the size and complexity of the environments in the virtual world increased, it becomes more necessary to populate them with peoples, and this is the reason why rendering the crowd in real-time is very crucial. Generally, crowd simulation consists of three important areas. They are realism of behavioral (Thompson and Marchant 1995), high-quality visualization (Dobbyn et al. 2005) and convergence of both areas. Realism of behavioral is mainly used for simple 2D visualizations because most of the attentions are concentrated on simulating the behaviors of the group. High quality visualization is regularly used for movie productions and computer games. It gives intention on producing more convincing visual rather than realism of behaviors. The convergences of both areas are mainly used for application like training systems. In order to make the training system more effective, the element of valid replication of the behaviors and high-quality visualization is added

    Real time multimodal interaction with animated virtual human

    Get PDF
    This paper describes the design and implementation of a real time animation framework in which animated virtual human is capable of performing multimodal interactions with human user. The animation system consists of several functional components, namely perception, behaviours generation, and motion generation. The virtual human agent in the system has a complex underlying geometry structure with multiple degrees of freedom (DOFs). It relies on a virtual perception system to capture information from its environment and respond to human user's commands by a combination of non-verbal behaviours including co-verbal gestures, posture, body motions and simple utterances. A language processing module is incorporated to interpret user's command. In particular, an efficient motion generation method has been developed to combines both motion captured data and parameterized actions generated in real time to produce variations in agent's behaviours depending on its momentary emotional states

    Kinect crowd interaction

    Full text link
    Most of the state-of-the-art commercial simulation software mainly focuses on providing realistic animations and convincing artificial intelligence to avatars in the scenario. However, works on how to trigger the events and avatar reactions in the scenario in a natural and intuitive way are less noticed and developed. Typical events are usually triggered by predefined timestamps. Once the events are set, there is no easy way to interactively generate new events while the scene is running and therefore difficult to dynamically affect the avatar reactions. Based on this situation, we propose a framework to use human gesture as input to trigger events within a DI-Guy simulation scenario in real-time, which could greatly help users to control events and avatar reactions in the scenario. By implementing such a framework, we will be able to identify user’s intentions interactively and ensure that the avatars make corresponding reactions

    Crowd Simulation Incorporating Agent Psychological Models, Roles and Communication

    Get PDF
    We describe a new architecture to integrate a psychological model into a crowd simulation system in order to obtain believable emergent behaviors. Our existing crowd simulation system (MACES) performs high level wayfinding to explore unknown environments and obtain a cognitive map for navigation purposes, in addition to dealing with low level motion within each room based on social forces. Communication and roles are added to achieve individualistic behaviors and a realistic way to spread information about the environment. To expand the range of realistic human behaviors, we use a system (PMFserv) that implements human behavior models from a range of ability, stress, emotion, decision theoretic and motivation sources. An architecture is proposed that combines and integrates MACES and PMFserv to add validated agent behaviors to crowd simulations

    Applications of Virtual Reality

    Get PDF
    Information Technology is growing rapidly. With the birth of high-resolution graphics, high-speed computing and user interaction devices Virtual Reality has emerged as a major new technology in the mid 90es, last century. Virtual Reality technology is currently used in a broad range of applications. The best known are games, movies, simulations, therapy. From a manufacturing standpoint, there are some attractive applications including training, education, collaborative work and learning. This book provides an up-to-date discussion of the current research in Virtual Reality and its applications. It describes the current Virtual Reality state-of-the-art and points out many areas where there is still work to be done. We have chosen certain areas to cover in this book, which we believe will have potential significant impact on Virtual Reality and its applications. This book provides a definitive resource for wide variety of people including academicians, designers, developers, educators, engineers, practitioners, researchers, and graduate students

    Virtual Reality Games for Motor Rehabilitation

    Get PDF
    This paper presents a fuzzy logic based method to track user satisfaction without the need for devices to monitor users physiological conditions. User satisfaction is the key to any product’s acceptance; computer applications and video games provide a unique opportunity to provide a tailored environment for each user to better suit their needs. We have implemented a non-adaptive fuzzy logic model of emotion, based on the emotional component of the Fuzzy Logic Adaptive Model of Emotion (FLAME) proposed by El-Nasr, to estimate player emotion in UnrealTournament 2004. In this paper we describe the implementation of this system and present the results of one of several play tests. Our research contradicts the current literature that suggests physiological measurements are needed. We show that it is possible to use a software only method to estimate user emotion

    Crowd simulation: A video observation and agent-based modelling approach

    Get PDF
    Human movement in a crowd can be considered as complex and unpredictable, and accordingly large scale video observation studies based on a conceptual behaviour framework were used to characterise individual movements and behaviours. The conceptual behaviours were Free Movement (Moving Through and Move-Stop-Move), Same Direction Movement (Queuing and Competitive) and Opposite Direction Movement (Avoiding and Passing Through). Movement in crowds was modelled and simulated using an agent-based method using the gaming software Dark BASIC Professional. The agents (individuals) were given parameters of personal objective, visual perception, speed of movement, personal space and avoidance angle or distance within different crowd densities. Two case studies including a multi-mode transportation system layout and a bottleneck / non-bottleneck evacuation are presented

    Automated generation of geometrically-precise and semantically-informed virtual geographic environnements populated with spatially-reasoning agents

    Get PDF
    La Géo-Simulation Multi-Agent (GSMA) est un paradigme de modélisation et de simulation de phénomènes dynamiques dans une variété de domaines d'applications tels que le domaine du transport, le domaine des télécommunications, le domaine environnemental, etc. La GSMA est utilisée pour étudier et analyser des phénomènes qui mettent en jeu un grand nombre d'acteurs simulés (implémentés par des agents) qui évoluent et interagissent avec une représentation explicite de l'espace qu'on appelle Environnement Géographique Virtuel (EGV). Afin de pouvoir interagir avec son environnement géographique qui peut être dynamique, complexe et étendu (à grande échelle), un agent doit d'abord disposer d'une représentation détaillée de ce dernier. Les EGV classiques se limitent généralement à une représentation géométrique du monde réel laissant de côté les informations topologiques et sémantiques qui le caractérisent. Ceci a pour conséquence d'une part de produire des simulations multi-agents non plausibles, et, d'autre part, de réduire les capacités de raisonnement spatial des agents situés. La planification de chemin est un exemple typique de raisonnement spatial dont un agent pourrait avoir besoin dans une GSMA. Les approches classiques de planification de chemin se limitent à calculer un chemin qui lie deux positions situées dans l'espace et qui soit sans obstacle. Ces approches ne prennent pas en compte les caractéristiques de l'environnement (topologiques et sémantiques), ni celles des agents (types et capacités). Les agents situés ne possèdent donc pas de moyens leur permettant d'acquérir les connaissances nécessaires sur l'environnement virtuel pour pouvoir prendre une décision spatiale informée. Pour répondre à ces limites, nous proposons une nouvelle approche pour générer automatiquement des Environnements Géographiques Virtuels Informés (EGVI) en utilisant les données fournies par les Systèmes d'Information Géographique (SIG) enrichies par des informations sémantiques pour produire des GSMA précises et plus réalistes. De plus, nous présentons un algorithme de planification hiérarchique de chemin qui tire avantage de la description enrichie et optimisée de l'EGVI pour fournir aux agents un chemin qui tient compte à la fois des caractéristiques de leur environnement virtuel et de leurs types et capacités. Finalement, nous proposons une approche pour la gestion des connaissances sur l'environnement virtuel qui vise à supporter la prise de décision informée et le raisonnement spatial des agents situés

    Virtual reality for the built environment: A critical review of recent advances

    Get PDF
    This paper reviews the current state of the art for Virtual Reality (VR) and Virtual Environment (VE) applications in the field of the built environment. The review begins with a brief overview of technological components involved in enabling VR technology. A classification framework is developed to classify 150 journal papers in order to reveal the scholarly coverage of VR and VE from 2005 to 2011, inclusive. The classification framework summarizes achievements, established knowledge, research issues and challenges in the area. The framework is based on four layers of VR: concept and theory, implementation, evaluation and industrial adoption. These layers encompass architecture and design, urban planning and landscape, engineering, construction, facility management, lifecycle integration, training and education. This paper also discusses various representative VR research work in line with the classification framework. Finally the paper predicts future research trends in this area

    Brain-controlled serious games for cultural heritage

    Get PDF
    • …
    corecore