5,269 research outputs found

    Speaker-independent emotion recognition exploiting a psychologically-inspired binary cascade classification schema

    No full text
    In this paper, a psychologically-inspired binary cascade classification schema is proposed for speech emotion recognition. Performance is enhanced because commonly confused pairs of emotions are distinguishable from one another. Extracted features are related to statistics of pitch, formants, and energy contours, as well as spectrum, cepstrum, perceptual and temporal features, autocorrelation, MPEG-7 descriptors, Fujisakis model parameters, voice quality, jitter, and shimmer. Selected features are fed as input to K nearest neighborhood classifier and to support vector machines. Two kernels are tested for the latter: Linear and Gaussian radial basis function. The recently proposed speaker-independent experimental protocol is tested on the Berlin emotional speech database for each gender separately. The best emotion recognition accuracy, achieved by support vector machines with linear kernel, equals 87.7%, outperforming state-of-the-art approaches. Statistical analysis is first carried out with respect to the classifiers error rates and then to evaluate the information expressed by the classifiers confusion matrices. © Springer Science+Business Media, LLC 2011

    Feature Learning from Spectrograms for Assessment of Personality Traits

    Full text link
    Several methods have recently been proposed to analyze speech and automatically infer the personality of the speaker. These methods often rely on prosodic and other hand crafted speech processing features extracted with off-the-shelf toolboxes. To achieve high accuracy, numerous features are typically extracted using complex and highly parameterized algorithms. In this paper, a new method based on feature learning and spectrogram analysis is proposed to simplify the feature extraction process while maintaining a high level of accuracy. The proposed method learns a dictionary of discriminant features from patches extracted in the spectrogram representations of training speech segments. Each speech segment is then encoded using the dictionary, and the resulting feature set is used to perform classification of personality traits. Experiments indicate that the proposed method achieves state-of-the-art results with a significant reduction in complexity when compared to the most recent reference methods. The number of features, and difficulties linked to the feature extraction process are greatly reduced as only one type of descriptors is used, for which the 6 parameters can be tuned automatically. In contrast, the simplest reference method uses 4 types of descriptors to which 6 functionals are applied, resulting in over 20 parameters to be tuned.Comment: 12 pages, 3 figure

    Speech-based recognition of self-reported and observed emotion in a dimensional space

    Get PDF
    The differences between self-reported and observed emotion have only marginally been investigated in the context of speech-based automatic emotion recognition. We address this issue by comparing self-reported emotion ratings to observed emotion ratings and look at how differences between these two types of ratings affect the development and performance of automatic emotion recognizers developed with these ratings. A dimensional approach to emotion modeling is adopted: the ratings are based on continuous arousal and valence scales. We describe the TNO-Gaming Corpus that contains spontaneous vocal and facial expressions elicited via a multiplayer videogame and that includes emotion annotations obtained via self-report and observation by outside observers. Comparisons show that there are discrepancies between self-reported and observed emotion ratings which are also reflected in the performance of the emotion recognizers developed. Using Support Vector Regression in combination with acoustic and textual features, recognizers of arousal and valence are developed that can predict points in a 2-dimensional arousal-valence space. The results of these recognizers show that the self-reported emotion is much harder to recognize than the observed emotion, and that averaging ratings from multiple observers improves performance

    Speaker Recognition: Advancements and Challenges

    Get PDF

    Speaker Dependent Voice Recognition with Word-Tense Association and Part-of-Speech Tagging

    Get PDF
    Extensive Research has been conducted on speech recognition and Speaker Recognition over the past few decades. Speaker recognition deals with identifying the speaker from multiple speakers and the ability to filter out the voice of an individual from the background for computational understanding. The more commonly researched method, speech recognition, deals only with computational linguistics. This thesis deals with speaker recognition and natural language processing. The most common speaker recognition systems are Text-Dependent and identify the speaker after a key word/phrase is uttered. This thesis presents Text-Independent Speaker recognition systems that incorporate the collaborative effort and research of noise-filtering, Speech Segmentation, Feature extraction, speaker verification and finally, Partial Language Modelling. The filtering process was accomplished using 4th order Butterworth Band-pass filters to dampen ambient noise outside normal speech frequencies of 300Hzto3000Hz. Speech segmentation utilizes Hamming windows to segment the speech, after which speech detection occurs by calculating the Short time Energy and Zero-crossing rates over a particular time period and identifying voiced from unvoiced using a threshold. Audio data collected from different people is run consecutively through a Speaker Training and Recognition Algorithm which uses neural networks to create a training group and target group for the recognition process. The output of the segmentation module is then processed by the neural network to recognize the speaker. Though not implemented here due to database and computational requirements, the last module suggests a new model for the Part of Speech tagging process that involves a combination of Artificial Neural Networks (ANN) and Hidden Markov Models (HMM) in a series configuration to achieve higher accuracy. This differs from existing research by diverging from the usual single model approach or the creation of hybrid ANN and HMM models

    An Improved Speech Emotion Classification Approach Based on Optimal Voiced Unit

    Get PDF
    Emotional speech recognition (ESR) has significant role in human-computer interaction. ESR methodology involves audio segmentation for selecting units to analyze, extract features relevant to emotion, and finally perform a classification process. Previous research assumed that a single utterance was the unit of analysis. They believed that the emotional state remained constant during the utterance, even though the emotional state could change over time, even within a single utterance. As a result, using an utterance as a single unit is ineffective for this purpose. The study’s goal is to discover a new voiced unit that can be utilized to improve ESR accuracy. Several voiced units based on voiced segments were investigated. To determine the best-voiced unit, each unit is evaluated using an ESR based on a support vector machine classifier. The proposed method was validated using three datasets: EMO-DB, EMOVO, and SAVEE. Experimental results revealed that a voiced unit with five-voiced segments has the highest recognition rate. The emotional state of the overall utterance is decided by a majority vote of its parts’ emotional states. The proposed method outperforms the traditional method in terms of classification outcomes. EMO-DB, EMOVO, and SAVEE improve their recognition rates by 12%, 27%, and 23%, respectively

    On automatic emotion classification using acoustic features

    No full text
    In this thesis, we describe extensive experiments on the classification of emotions from speech using acoustic features. This area of research has important applications in human computer interaction. We have thoroughly reviewed the current literature and present our results on some of the contemporary emotional speech databases. The principal focus is on creating a large set of acoustic features, descriptive of different emotional states and finding methods for selecting a subset of best performing features by using feature selection methods. In this thesis we have looked at several traditional feature selection methods and propose a novel scheme which employs a preferential Borda voting strategy for ranking features. The comparative results show that our proposed scheme can strike a balance between accurate but computationally intensive wrapper methods and less accurate but computationally less intensive filter methods for feature selection. By using the selected features, several schemes for extending the binary classifiers to multiclass classification are tested. Some of these classifiers form serial combinations of binary classifiers while others use a hierarchical structure to perform this task. We describe a new hierarchical classification scheme, which we call Data-Driven Dimensional Emotion Classification (3DEC), whose decision hierarchy is based on non-metric multidimensional scaling (NMDS) of the data. This method of creating a hierarchical structure for the classification of emotion classes gives significant improvements over other methods tested. The NMDS representation of emotional speech data can be interpreted in terms of the well-known valence-arousal model of emotion. We find that this model does not givea particularly good fit to the data: although the arousal dimension can be identified easily, valence is not well represented in the transformed data. From the recognitionresults on these two dimensions, we conclude that valence and arousal dimensions are not orthogonal to each other. In the last part of this thesis, we deal with the very difficult but important topic of improving the generalisation capabilities of speech emotion recognition (SER) systems over different speakers and recording environments. This topic has been generally overlooked in the current research in this area. First we try the traditional methods used in automatic speech recognition (ASR) systems for improving the generalisation of SER in intra– and inter–database emotion classification. These traditional methods do improve the average accuracy of the emotion classifier. In this thesis, we identify these differences in the training and test data, due to speakers and acoustic environments, as a covariate shift. This shift is minimised by using importance weighting algorithms from the emerging field of transfer learning to guide the learning algorithm towards that training data which gives better representation of testing data. Our results show that importance weighting algorithms can be used to minimise the differences between the training and testing data. We also test the effectiveness of importance weighting algorithms on inter–database and cross-lingual emotion recognition. From these results, we draw conclusions about the universal nature of emotions across different languages

    Models and analysis of vocal emissions for biomedical applications

    Get PDF
    This book of Proceedings collects the papers presented at the 3rd International Workshop on Models and Analysis of Vocal Emissions for Biomedical Applications, MAVEBA 2003, held 10-12 December 2003, Firenze, Italy. The workshop is organised every two years, and aims to stimulate contacts between specialists active in research and industrial developments, in the area of voice analysis for biomedical applications. The scope of the Workshop includes all aspects of voice modelling and analysis, ranging from fundamental research to all kinds of biomedical applications and related established and advanced technologies

    Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed

    Get PDF
    The motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages. Part 1 places the motor theory of speech perception in a larger framework based on our earlier models of the adaptive formation of mirror neurons for grasping, and for viewing extensions of that mirror system as part of a larger system for neuro-linguistic processing, augmented by the present consideration of recognizing speech in a novel accent. Part 2 then offers a novel computational model of how a listener comes to understand the speech of someone speaking the listener's native language with a foreign accent. The core tenet of the model is that the listener uses hypotheses about the word the speaker is currently uttering to update probabilities linking the sound produced by the speaker to phonemes in the native language repertoire of the listener. This, on average, improves the recognition of later words. This model is neutral regarding the nature of the representations it uses (motor vs. auditory). It serve as a reference point for the discussion in Part 3, which proposes a dual-stream neuro-linguistic architecture to revisits claims for and against the motor theory of speech perception and the relevance of mirror neurons, and extracts some implications for the reframing of the motor theory

    Recent Trends in Computational Intelligence

    Get PDF
    Traditional models struggle to cope with complexity, noise, and the existence of a changing environment, while Computational Intelligence (CI) offers solutions to complicated problems as well as reverse problems. The main feature of CI is adaptability, spanning the fields of machine learning and computational neuroscience. CI also comprises biologically-inspired technologies such as the intellect of swarm as part of evolutionary computation and encompassing wider areas such as image processing, data collection, and natural language processing. This book aims to discuss the usage of CI for optimal solving of various applications proving its wide reach and relevance. Bounding of optimization methods and data mining strategies make a strong and reliable prediction tool for handling real-life applications
    corecore