629 research outputs found

    Genetic Transfer or Population Diversification? Deciphering the Secret Ingredients of Evolutionary Multitask Optimization

    Full text link
    Evolutionary multitasking has recently emerged as a novel paradigm that enables the similarities and/or latent complementarities (if present) between distinct optimization tasks to be exploited in an autonomous manner simply by solving them together with a unified solution representation scheme. An important matter underpinning future algorithmic advancements is to develop a better understanding of the driving force behind successful multitask problem-solving. In this regard, two (seemingly disparate) ideas have been put forward, namely, (a) implicit genetic transfer as the key ingredient facilitating the exchange of high-quality genetic material across tasks, and (b) population diversification resulting in effective global search of the unified search space encompassing all tasks. In this paper, we present some empirical results that provide a clearer picture of the relationship between the two aforementioned propositions. For the numerical experiments we make use of Sudoku puzzles as case studies, mainly because of their feature that outwardly unlike puzzle statements can often have nearly identical final solutions. The experiments reveal that while on many occasions genetic transfer and population diversity may be viewed as two sides of the same coin, the wider implication of genetic transfer, as shall be shown herein, captures the true essence of evolutionary multitasking to the fullest.Comment: 7 pages, 6 figure

    An Efficient Local Search for Partial Latin Square Extension Problem

    Full text link
    A partial Latin square (PLS) is a partial assignment of n symbols to an nxn grid such that, in each row and in each column, each symbol appears at most once. The partial Latin square extension problem is an NP-hard problem that asks for a largest extension of a given PLS. In this paper we propose an efficient local search for this problem. We focus on the local search such that the neighborhood is defined by (p,q)-swap, i.e., removing exactly p symbols and then assigning symbols to at most q empty cells. For p in {1,2,3}, our neighborhood search algorithm finds an improved solution or concludes that no such solution exists in O(n^{p+1}) time. We also propose a novel swap operation, Trellis-swap, which is a generalization of (1,q)-swap and (2,q)-swap. Our Trellis-neighborhood search algorithm takes O(n^{3.5}) time to do the same thing. Using these neighborhood search algorithms, we design a prototype iterated local search algorithm and show its effectiveness in comparison with state-of-the-art optimization solvers such as IBM ILOG CPLEX and LocalSolver.Comment: 17 pages, 2 figure
    • …
    corecore