1,050 research outputs found

    Accelerating Parametric Probabilistic Verification

    Full text link
    We present a novel method for computing reachability probabilities of parametric discrete-time Markov chains whose transition probabilities are fractions of polynomials over a set of parameters. Our algorithm is based on two key ingredients: a graph decomposition into strongly connected subgraphs combined with a novel factorization strategy for polynomials. Experimental evaluations show that these approaches can lead to a speed-up of up to several orders of magnitude in comparison to existing approache

    On the asymptotic and practical complexity of solving bivariate systems over the reals

    Get PDF
    This paper is concerned with exact real solving of well-constrained, bivariate polynomial systems. The main problem is to isolate all common real roots in rational rectangles, and to determine their intersection multiplicities. We present three algorithms and analyze their asymptotic bit complexity, obtaining a bound of \sOB(N^{14}) for the purely projection-based method, and \sOB(N^{12}) for two subresultant-based methods: this notation ignores polylogarithmic factors, where NN bounds the degree and the bitsize of the polynomials. The previous record bound was \sOB(N^{14}). Our main tool is signed subresultant sequences. We exploit recent advances on the complexity of univariate root isolation, and extend them to sign evaluation of bivariate polynomials over two algebraic numbers, and real root counting for polynomials over an extension field. Our algorithms apply to the problem of simultaneous inequalities; they also compute the topology of real plane algebraic curves in \sOB(N^{12}), whereas the previous bound was \sOB(N^{14}). All algorithms have been implemented in MAPLE, in conjunction with numeric filtering. We compare them against FGB/RS, system solvers from SYNAPS, and MAPLE libraries INSULATE and TOP, which compute curve topology. Our software is among the most robust, and its runtimes are comparable, or within a small constant factor, with respect to the C/C++ libraries. Key words: real solving, polynomial systems, complexity, MAPLE softwareComment: 17 pages, 4 algorithms, 1 table, and 1 figure with 2 sub-figure

    Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables

    Full text link
    Analytic combinatorics studies the asymptotic behaviour of sequences through the analytic properties of their generating functions. This article provides effective algorithms required for the study of analytic combinatorics in several variables, together with their complexity analyses. Given a multivariate rational function we show how to compute its smooth isolated critical points, with respect to a polynomial map encoding asymptotic behaviour, in complexity singly exponential in the degree of its denominator. We introduce a numerical Kronecker representation for solutions of polynomial systems with rational coefficients and show that it can be used to decide several properties (0 coordinate, equal coordinates, sign conditions for real solutions, and vanishing of a polynomial) in good bit complexity. Among the critical points, those that are minimal---a property governed by inequalities on the moduli of the coordinates---typically determine the dominant asymptotics of the diagonal coefficient sequence. When the Taylor expansion at the origin has all non-negative coefficients (known as the `combinatorial case') and under regularity conditions, we utilize this Kronecker representation to determine probabilistically the minimal critical points in complexity singly exponential in the degree of the denominator, with good control over the exponent in the bit complexity estimate. Generically in the combinatorial case, this allows one to automatically and rigorously determine asymptotics for the diagonal coefficient sequence. Examples obtained with a preliminary implementation show the wide applicability of this approach.Comment: As accepted to proceedings of ISSAC 201

    Deterministic Factorization of Sparse Polynomials with Bounded Individual Degree

    Full text link
    In this paper we study the problem of deterministic factorization of sparse polynomials. We show that if f∈F[x1,x2,
,xn]f \in \mathbb{F}[x_{1},x_{2},\ldots ,x_{n}] is a polynomial with ss monomials, with individual degrees of its variables bounded by dd, then ff can be deterministically factored in time spoly(d)log⁡ns^{\mathrm{poly}(d) \log n}. Prior to our work, the only efficient factoring algorithms known for this class of polynomials were randomized, and other than for the cases of d=1d=1 and d=2d=2, only exponential time deterministic factoring algorithms were known. A crucial ingredient in our proof is a quasi-polynomial sparsity bound for factors of sparse polynomials of bounded individual degree. In particular we show if ff is an ss-sparse polynomial in nn variables, with individual degrees of its variables bounded by dd, then the sparsity of each factor of ff is bounded by sO(d2log⁡n)s^{O({d^2\log{n}})}. This is the first nontrivial bound on factor sparsity for d>2d>2. Our sparsity bound uses techniques from convex geometry, such as the theory of Newton polytopes and an approximate version of the classical Carath\'eodory's Theorem. Our work addresses and partially answers a question of von zur Gathen and Kaltofen (JCSS 1985) who asked whether a quasi-polynomial bound holds for the sparsity of factors of sparse polynomials

    Quasi-GCD computations

    Get PDF
    AbstractFor univariate polynomials with real or complex coefficients and a given error bound Ï” > 0, h is called a quasi-gcd of f and g, if h is an Ï”-approximate divisor of f and of g and if any (exact) common divisor of f, g is an approximate divisor of h. Extended quasi-gcd computation means to find such h and additional cofactors u, Îœ such that | uf + Îœg − h | < Ï” | h | holds. Suitable “pivoting” leads to a numerically stable version of Euclid's algorithm for solving this task. Further refinements by a divide-and-conquer technique and by means of fast algorithms for polynomial arithmetic then yield the worst case upper bound O(n2 lg n(lg(1/Ï”) + n lg n)) of “pointer time” for nth-degree polynomials. In the particular case of integer polynomials, however, an immediate reduction to fast integer gcd computation is recommended, instead
    • 

    corecore