7,718 research outputs found

    Collaborative e-science architecture for Reaction Kinetics research community

    Get PDF
    This paper presents a novel collaborative e-science architecture (CeSA) to address two challenging issues in e-science that arise from the management of heterogeneous distributed environments: (i) how to provide individual scientists an integrated environment to collaborate with each other in distributed, loosely coupled research communities where each member might be using a disparate range of tools; and (ii) how to provide easy access to a range of computationally intensive resources from a desktop. The Reaction Kinetics research community was used to capture the requirements and in the evaluation of the proposed architecture. The result demonstrated the feasibility of the approach and the potential benefits of the CeSA

    Self-organising management of Grid environments

    Get PDF
    This paper presents basic concepts, architectural principles and algorithms for efficient resource and security management in cluster computing environments and the Grid. The work presented in this paper is funded by BTExacT and the EPSRC project SO-GRM (GR/S21939)

    Grid service discovery with rough sets

    Get PDF
    Copyright [2008] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.The computational grid is evolving as a service-oriented computing infrastructure that facilitates resource sharing and large-scale problem solving over the Internet. Service discovery becomes an issue of vital importance in utilising grid facilities. This paper presents ROSSE, a Rough sets based search engine for grid service discovery. Building on Rough sets theory, ROSSE is novel in its capability to deal with uncertainty of properties when matching services. In this way, ROSSE can discover the services that are most relevant to a service query from a functional point of view. Since functionally matched services may have distinct non-functional properties related to Quality of Service (QoS), ROSSE introduces a QoS model to further filter matched services with their QoS values to maximise user satisfaction in service discovery. ROSSE is evaluated in terms of its accuracy and efficiency in discovery of computing services

    A security architecture for personal networks

    Get PDF
    Abstract Personal Network (PN) is a new concept utilizing pervasive computing to meet the needs of the user. As PNs edge closer towards reality, security becomes an important concern since any vulnerability in the system will limit its practical use. In this paper we introduce a security architecture designed for PNs. Our aim is to use secure but lightweight mechanisms suitable for resource constrained devices and wireless communication. We support pair-wise keys for secure cluster formation and use group keys for securing intra-cluster communication. In order to analyze the performance of our proposed mechanisms, we carry out simulations using ns-2. The results show that our mechanisms have a low overhead in terms of delay and energy consumption

    Agent-based resource management for grid computing

    Get PDF
    A computational grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capability. An ideal grid environment should provide access to the available resources in a seamless manner. Resource management is an important infrastructural component of a grid computing environment. The overall aim of resource management is to efficiently schedule applications that need to utilise the available resources in the grid environment. Such goals within the high performance community will rely on accurate performance prediction capabilities. An existing toolkit, known as PACE (Performance Analysis and Characterisation Environment), is used to provide quantitative data concerning the performance of sophisticated applications running on high performance resources. In this thesis an ASCI (Accelerated Strategic Computing Initiative) kernel application, Sweep3D, is used to illustrate the PACE performance prediction capabilities. The validation results show that a reasonable accuracy can be obtained, cross-platform comparisons can be easily undertaken, and the process benefits from a rapid evaluation time. While extremely well-suited for managing a locally distributed multi-computer, the PACE functions do not map well onto a wide-area environment, where heterogeneity, multiple administrative domains, and communication irregularities dramatically complicate the job of resource management. Scalability and adaptability are two key challenges that must be addressed. In this thesis, an A4 (Agile Architecture and Autonomous Agents) methodology is introduced for the development of large-scale distributed software systems with highly dynamic behaviours. An agent is considered to be both a service provider and a service requestor. Agents are organised into a hierarchy with service advertisement and discovery capabilities. There are four main performance metrics for an A4 system: service discovery speed, agent system efficiency, workload balancing, and discovery success rate. Coupling the A4 methodology with PACE functions, results in an Agent-based Resource Management System (ARMS), which is implemented for grid computing. The PACE functions supply accurate performance information (e. g. execution time) as input to a local resource scheduler on the fly. At a meta-level, agents advertise their service information and cooperate with each other to discover available resources for grid-enabled applications. A Performance Monitor and Advisor (PMA) is also developed in ARMS to optimise the performance of the agent behaviours. The PMA is capable of performance modelling and simulation about the agents in ARMS and can be used to improve overall system performance. The PMA can monitor agent behaviours in ARMS and reconfigure them with optimised strategies, which include the use of ACTs (Agent Capability Tables), limited service lifetime, limited scope for service advertisement and discovery, agent mobility and service distribution, etc. The main contribution of this work is that it provides a methodology and prototype implementation of a grid Resource Management System (RMS). The system includes a number of original features that cannot be found in existing research solutions

    JXTA-Overlay: a P2P platform for distributed, collaborative, and ubiquitous computing

    Get PDF
    With the fast growth of the Internet infrastructure and the use of large-scale complex applications in industries, transport, logistics, government, health, and businesses, there is an increasing need to design and deploy multifeatured networking applications. Important features of such applications include the capability to be self-organized, be decentralized, integrate different types of resources (personal computers, laptops, and mobile and sensor devices), and provide global, transparent, and secure access to resources. Moreover, such applications should support not only traditional forms of reliable distributing computing and optimization of resources but also various forms of collaborative activities, such as business, online learning, and social networks in an intelligent and secure environment. In this paper, we present the Juxtapose (JXTA)-Overlay, which is a JXTA-based peer-to-peer (P2P) platform designed with the aim to leverage capabilities of Java, JXTA, and P2P technologies to support distributed and collaborative systems. The platform can be used not only for efficient and reliable distributed computing but also for collaborative activities and ubiquitous computing by integrating in the platform end devices. The design of a user interface as well as security issues are also tackled. We evaluate the proposed system by experimental study and show its usefulness for massive processing computations and e-learning applications.Peer ReviewedPostprint (author's final draft

    The Semantic Grid: A future e-Science infrastructure

    No full text
    e-Science offers a promising vision of how computer and communication technology can support and enhance the scientific process. It does this by enabling scientists to generate, analyse, share and discuss their insights, experiments and results in an effective manner. The underlying computer infrastructure that provides these facilities is commonly referred to as the Grid. At this time, there are a number of grid applications being developed and there is a whole raft of computer technologies that provide fragments of the necessary functionality. However there is currently a major gap between these endeavours and the vision of e-Science in which there is a high degree of easy-to-use and seamless automation and in which there are flexible collaborations and computations on a global scale. To bridge this practice–aspiration divide, this paper presents a research agenda whose aim is to move from the current state of the art in e-Science infrastructure, to the future infrastructure that is needed to support the full richness of the e-Science vision. Here the future e-Science research infrastructure is termed the Semantic Grid (Semantic Grid to Grid is meant to connote a similar relationship to the one that exists between the Semantic Web and the Web). In particular, we present a conceptual architecture for the Semantic Grid. This architecture adopts a service-oriented perspective in which distinct stakeholders in the scientific process, represented as software agents, provide services to one another, under various service level agreements, in various forms of marketplace. We then focus predominantly on the issues concerned with the way that knowledge is acquired and used in such environments since we believe this is the key differentiator between current grid endeavours and those envisioned for the Semantic Grid
    • …
    corecore