7,597 research outputs found

    An objective based classification of aggregation techniques for wireless sensor networks

    No full text
    Wireless Sensor Networks have gained immense popularity in recent years due to their ever increasing capabilities and wide range of critical applications. A huge body of research efforts has been dedicated to find ways to utilize limited resources of these sensor nodes in an efficient manner. One of the common ways to minimize energy consumption has been aggregation of input data. We note that every aggregation technique has an improvement objective to achieve with respect to the output it produces. Each technique is designed to achieve some target e.g. reduce data size, minimize transmission energy, enhance accuracy etc. This paper presents a comprehensive survey of aggregation techniques that can be used in distributed manner to improve lifetime and energy conservation of wireless sensor networks. Main contribution of this work is proposal of a novel classification of such techniques based on the type of improvement they offer when applied to WSNs. Due to the existence of a myriad of definitions of aggregation, we first review the meaning of term aggregation that can be applied to WSN. The concept is then associated with the proposed classes. Each class of techniques is divided into a number of subclasses and a brief literature review of related work in WSN for each of these is also presented

    Energy-Efficient Data Acquisition in Wireless Sensor Networks through Spatial Correlation

    No full text
    The application of Wireless Sensor Networks (WSNs) is restrained by their often-limited lifetime. A sensor node's lifetime is fundamentally linked to the volume of data that it senses, processes and reports. Spatial correlation between sensor nodes is an inherent phenomenon to WSNs, induced by redundant nodes which report duplicated information. In this paper, we report on the design of a distributed sampling scheme referred to as the 'Virtual Sampling Scheme' (VSS). This scheme is formed from two components: an algorithm for forming virtual clusters, and a distributed sampling method. VSS primarily utilizes redundancy of sensor nodes to get only a subset to sense the environment at any one time. Sensor nodes that are not sensing the environment are in a low-power sleep state, thus conserving energy. Furthermore, VSS balances the energy consumption amongst nodes by using a round robin method
    corecore