660 research outputs found

    Expectations for Associative-Commutative Unification Speedups in a Multicomputer Environment

    Get PDF
    An essential element of automated deduction systems is unification algorithms which identify general substitutions and when applied to two expressions, make them identical. However, functions which are associative and commutative, such as the usual addition and multiplication functions, often arise in term rewriting systems, program verification, the theory of abstract data types and logic programming. The introduction to the associative and commutative equality axioms together with standard unification brings with it problems of termination and unreasonably large search spaces. One way around these problems is to remove the troublesome axioms from the system and to employ a unification algorithm which unifies modulo the axioms of associativity and commutativity. Unlike standard unification, the associative-commutative (AC) unification of two expressions can lead to the formation of many most general unifiers. A report is presented on a hybrid AC unification algorithm which has been implemented to run in parallel on an Intel iPSC/

    Opening the AC-Unification Race

    Get PDF
    This note reports about the implementation of AC-unification algorithms, based on the variable-abstraction method of Stickel and on the constant-abstraction method of Livesey, Siekmann, and Herold. We give a set of 105 benchmark examples and compare execution times for implementations of the two approaches. This documents for other researchers what we consider to be the state-of-the-art performance for elementary AC-unification problems

    Nominal AC-Matching

    Get PDF

    A Parallel Implementation of Stickel\u27s AC Unification Algorithm in a Message-Passing Environment

    Get PDF
    Unification algorithms are an essential component of automated reasoning and term rewriting systems. Unification finds a set of substitutions or unifiers that, when applied to variables in two or more terms, make those terms identical or equivalent. Most systems use Robinson\u27s unification algorithm or some variant of it. However, terms containing functions exhibiting properties such as associativity and commutativity may be made equivalent without appearing identical. Systems employing Robinson\u27s unification algorithm must use some mechanism separate from the unification algorithm to reason with such functions. Often this is done by incorporating the properties into a rule base and generating equivalent terms which can be unified by Robinson\u27s algorithm. However, rewriting the terms in this manner can generate large numbers of useless terms in the problem space of the system. If the properties of the functions are incorporated into the unification algorithm itself, there is no need to rewrite the terms such that they appear identical. Stickel developed an algorithm to unify two terms containing associative and commutative functions. The unifiers (there may be more than one) are found by creating a homogeneous linear Diophantine equation with integer coefficients from the terms being unified. The unifiers can be constructed from solutions to this equation. The unifiers generated from one solution of the Diophantine equation are independent of any other solution to the equation. Therefore, once the Diophantine equation has been solved, the unifiers can be calculated from the solutions in parallel. We have implemented Stickel\u27s AC unification algorithm to run in parallel on a local area network of Sun 4/110 workstations in an effort to improve the speed of AC unification

    Unification in Abelian Semigroups

    Get PDF
    Unification in equational theories, i.e. solving of equations in varieties, is a basic operation in Computational Logic, in Artificial Intelligence (AI) and in many applications of Computer Science. In particular the unification of terms in the presence of an associative and commutative f unction, i.e. solving of equations in Abelian Semigroups, turned out to be of practical relevance for Term Rewriting Systems, Automated Theorem Provers and many AI-programming languages. The observation that unification under associativity and commutativity reduces to the solution of certain linear diophantine equations is the basis for a complete and minimal unification algorithm. The set of most general unifiers is closely related to the notion of a basis for the linear solution space of these equations. These results are extended to unification in free term algebras combined with Abelian Semigroups

    Algebraic geometry over algebraic structures II: Foundations

    Full text link
    In this paper we introduce elements of algebraic geometry over an arbitrary algebraic structure. We prove Unification Theorems which gather the description of coordinate algebras by several ways.Comment: 55 page

    Recompression: a simple and powerful technique for word equations

    Get PDF
    In this paper we present an application of a simple technique of local recompression, previously developed by the author in the context of compressed membership problems and compressed pattern matching, to word equations. The technique is based on local modification of variables (replacing X by aX or Xa) and iterative replacement of pairs of letters appearing in the equation by a `fresh' letter, which can be seen as a bottom-up compression of the solution of the given word equation, to be more specific, building an SLP (Straight-Line Programme) for the solution of the word equation. Using this technique we give a new, independent and self-contained proofs of most of the known results for word equations. To be more specific, the presented (nondeterministic) algorithm runs in O(n log n) space and in time polynomial in log N, where N is the size of the length-minimal solution of the word equation. The presented algorithm can be easily generalised to a generator of all solutions of the given word equation (without increasing the space usage). Furthermore, a further analysis of the algorithm yields a doubly exponential upper bound on the size of the length-minimal solution. The presented algorithm does not use exponential bound on the exponent of periodicity. Conversely, the analysis of the algorithm yields an independent proof of the exponential bound on exponent of periodicity. We believe that the presented algorithm, its idea and analysis are far simpler than all previously applied. Furthermore, thanks to it we can obtain a unified and simple approach to most of known results for word equations. As a small additional result we show that for O(1) variables (with arbitrary many appearances in the equation) word equations can be solved in linear space, i.e. they are context-sensitive.Comment: Submitted to a journal. Since previous version the proofs were simplified, overall presentation improve

    The Role of Term Symmetry in E-Unification and E-Completion

    Get PDF
    A major portion of the work and time involved in completing an incomplete set of reductions using an E-completion procedure such as the one described by Knuth and Bendix [070] or its extension to associative-commutative equational theories as described by Peterson and Stickel [PS81] is spent calculating critical pairs and subsequently testing them for coherence. A pruning technique which removes from consideration those critical pairs that represent redundant or superfluous information, either before, during, or after their calculation, can therefore make a marked difference in the run time and efficiency of an E-completion procedure to which it is applied. The exploitation of term symmetry is one such pruning technique. The calculation of redundant critical pairs can be avoided by detecting the term symmetries that can occur between the subterms of the left-hand side of the major reduction being used, and later between the unifiers of these subterms with the left-hand side of the minor reduction. After calculation, and even after reduction to normal form, the observation of term symmetries can lead to significant savings. The results in this paper were achieved through the development and use of a flexible E-unification algorithm which is currently written to process pairs of terms which may contain any combination of Null-E, C (Commutative), AC (Associative-Commutative) and ACI (Associative-Commutative with Identity) operators. One characteristic of this E-unification algorithm that we have not observed in any other to date is the ability to process a pair of terms which have different ACI top-level operators. In addition, the algorithm is a modular design which is a variation of the Yelick model [Ye85], and is easily extended to process terms containing operators of additional equational theories by simply plugging in a unification module for the new theory

    Unification in monoidal theories is solving linear equations over semirings

    Get PDF
    Although for numerous equational theories unification algorithms have been developed there is still a lack of general methods. In this paper we apply algebraic techniques to the study of a whole class of theories, which we call monoidal. Our approach leads to general results on the structure of unification algorithms and the unification type of such theories. An equational theory is monoidal if it contains a binary operation which is associative and commutative, an identity for the binary operation, and an arbitrary number of unary symbols which are homomorphisms for the binary operation and the identity. Monoidal theories axiomatize varieties of abelian monoids. Examples are the theories of abelian monoids (AC), idempotent abelian monoids (ACI), and abelian groups. To every monoidal theory we associate a semiring. Intuitively, semirings are rings without subtraction. We show that every unification problem in a monoidal theory can be translated into a system of linear equations over the corresponding semiring. More specifically, problems without free constants are translated into homogeneous equations. For problems with free constants inhomogeneous equations have to be solved in addition. Exploiting the correspondence between unification and linear algebra we give algebraic characterizations of the unification type of a theory. In particular, we show that with respect to unification without constants monoidal theories are either unitary or nullary. Applying Hilbert\u27s Basis Theorem we prove that theories of groups with commuting homomorphisms are unitary with respect to unification with and without constants
    corecore