1,711 research outputs found

    A lung-inspired printed circuit board polymer electrolyte fuel cell

    Get PDF
    Fractal cathode flow-fields, inspired by the flow mechanism of air inside lungs, can provide homogeneous, scalable and uniform distribution of reactants to polymer electrolyte fuel cell (PEFC) electrodes. However, the complex 3D flow-fields demonstrated previously face manufacturing challenges, such as requiring selective laser sintering, an additive manufacturing method that is expensive to scale up. Here, a lung-inspired cathode flow-field is introduced and fabricated using low-cost, lightweight printed circuit boards (PCB). The uniformity and alignment between individual PCB layers producing the fractal hierarchy of flow channels have been characterised using X-ray computed tomography (X-ray CT). The performance of the fractal flow-field exceeds that of conventional single-serpentine flow-fields and is particularly beneficial when operating on air with a low relative humidity. The lung-inspired design is shown to lead to a more stable operation than the single-serpentine design, as a result of uniform distribution of reactants

    Integration of air-cooled multi-stack polymer electrolyte fuel cell systems into renewable microgrids

    Get PDF
    Currently, there is a growing interest in increasing the power range of air-cooled fuel cells (ACFCs), as they are cheaper, easier to use and maintain than water-cooled fuel cells (WCFCs). However, air-cooled stacks are only available up to medium power (<10 kW). Therefore, a good solution may be the development of ACFCs consisting of several stacks until the required power output is reached. This is the concept of air-cooled multi-stack fuel cell (AC-MSFC). The objective of this work is to develop a turnkey solution for the integration of AC-MSFCs in renewable microgrids, specifically those with high-voltage DC (HVDC) bus. This is challenging because the AC-MSFCs must operate in the microgrid as a single ACFC with adjustable power, depending on the number of stacks in operation. To achieve this, the necessary power converter (ACFCs operate at low voltages, so high conversion rates are required) and control loops must be developed. Unlike most designs in the literature, the proposed solution is compact, forming a system (AC-MSFCS) with a single input (hydrogen) and a single output (high voltage regulated power or voltage) that can be easily integrated into any microgrid and easily scalable depending on the power required. The developed AC-MSFCS integrates stacks, balance of plant, data acquisition and instrumentation, power converters and local controllers. In addition, a virtual instrument (VI) has been developed which, connected to the energy management system (EMS) of the microgrid, allows monitoring of the entire AC-MSFCS (operating temperature, purging, cell voltage monitoring for degradation evaluation, stacks operating point control and alarm and event management), as well as serving as a user interface. This allows the EMS to know the degradation of each stack and to carry out energy distribution strategies or specific maintenance actions, which improves efficiency, lifespan and, of course, saves costs. The experimental results have been excellent in terms of the correct operation of the developed AC-MSFCS. Likewise, the accumulated degradation of the stacks was quantified, showing cells with a degradation of >80%. The excellent electrical and thermal performance of the developed power converter was also validated, which allowed the correct and efficient supply of regulated power (average efficiency above 90%) to the HVDC bus, according to the power setpoint defined by the EMS of the microgrid.This research was funded by “H2Integration&Control. Integration and Control of a hydrogen-based pilot plant in residential applications for energy supply” Spanish Government, grant Ref: PID2020-116616RBC31,”; and “SALTES: Smartgrid with reconfigurable Architecture for testing controL Techniques and Energy Storage priority” by Andalusian Regional Program of R+D+, grant Ref: P20-00730

    Advanced Metrology for the Development of Nature-Inspired Polymer Electrolyte Fuel Cells

    Get PDF
    The cathode flow-field is an important component in polymer electrolyte membrane fuel cells (PEMFCs) that influences the cell’s performance significantly. An effective cathodic flow-field design is necessary for efficient transport and removal of reactants and products from its respective electrode. Fractal flow-fields, inspired by the flow mechanism of air inside the lungs, are identified to provide homogeneous, scalable and uniform distribution of reactants to polymer PEMFC electrodes. In this thesis, the design and development of lung-inspired fractal flow-fields, developed from layered planar printed circuit board (PCB) plates, is presented for cathodic reactant transport. The PCB-based approach makes the fractal flow-field cost-effective, easy to manufacture, scalable and lightweight, compared to laser sintered stainless steel fractal flow-fields, developed in previous work in the Centre for Nature-Inspired Engineering. Furthermore, advanced metrology techniques are utilised to characterise the lung-inspired fuel cells with a view to optimise their design and performance. Uniformity and alignment between individual PCB layers producing a fractal hierarchy of flow channels have been characterised using X-ray computed tomography (X-ray CT). Performance polarisations, current-voltage degradations and cell temperatures indicate that fractal PEMFCs perform better than conventional, single-serpentine PEMFCs. Standard electrochemical characterisations confirm the basis for the observed performance enhancement when using a fractal flow-field. Acoustic emission (AE) analysis, a first of its kind non-invasive and non-destructive hydration diagnostics tool, is utilised as a water management technique that identifies the presence of liquid water in flow channels and correlates its removal and generation with the level of cell performance. In addition, electro-thermal mapping, which reflects the surface distribution of current and temperature generated inside the cell, is performed to evaluate the influence of reactant and water distribution conditions inside the cells on its localised and overall cell performance

    Understanding the activity transport nexus in water and CO2_{2} electrolysis: State of the art, challenges and perspectives

    Get PDF
    This article reviews the challenge of expanding the current research focus on water and CO2 electrolysis from catalyst-related insights towards achieving complete understanding of the activity transport nexus within full electrolysis cells. The challenge arises from the complex interaction of a multitude of phenomena taking place at different scales that span several orders of magnitude. An overview of current research on materials and components, experiments and simulations are provided. As well as obvious differences, there are similar principles and phenomena within water and CO2_{2} electrolysis technologies, which are extracted. Against this background, a perspective on required future research within the individual fields, and the need for a multidisciplinary research approach across natural, materials and engineering sciences to tackle the activity transport nexus is presented

    Nanomaterials-Based Electrodes for Lithium-Ion Batteries and Alcohol Fuel Cells

    Get PDF
    This dissertation describes my research on surfactant-free synthesis of nanomaterials with applications for alcohol fuel-cell electrodes, and design and fabrication of nanomaterials-based current collectors that improve the performance of lithium-ion batteries (LIBs) by replacing existing current collectors. Chapter 1 provides a background on the electroanalytical tools used in this research, and an introduction to fuel cells and LIBs. Chapter 2 describes a novel synthesis method for fabricating gold-graphene composites by laser ablation of a gold strip in water. A well-known limitation in the fabrication of a metal-graphene composite is the use of surfactants that strongly adsorb on the metal surface and consequently reduce the catalytic activity of the metal catalyst. I developed a laser ablation-based one-pot synthesis to decorate graphene with gold nanoparticles (AuNPs) in water without using any surfactants. This linker-free gold-graphene composite was successfully tested as an electrode for the electrocatalytic oxidation of alcohols. A novel electrochemical method for depositing a porous gold-polycurcumin (Au-Polycurcumin) nanocomposite on conducting surfaces is presented in chapter 3. Au-Polycurcumin showed an excellent electrocatalytic activity for oxidation of small organic molecules such as ethanol, and methanol. In chapter 4, I demonstrate that reducing the resistance at the current collector active material interface (CCAMI) is a key factor for enhancing the performance of LIBs. I show that carbon nanotubes (CNTs), either directly grown or spray-coated on Al foils, are highly effective in reducing the CCAMI resistance of traditional LIB cathode materials (LiFePO4 or LFP, and LiNi0.33Co0.33Mn0.33O2 or NMC). The vertically aligned CNT-coated electrodes exhibited energy densities as high as (1) ∼500 W h kg–1 at ∼170 W kg–1 for LFP and (2) ∼760 W h kg–1 at ∼570 W kg–1 for NMC, both with a Li metal anode. In chapter 5, I demonstrate a surfactant-free spray coating process to coat commercial cellulose-based paper with CNTs. The prepared paper-CNTs are capable of replacing the conventional aluminum foil used in LIBs. Paper-CNTs were coated with LiFePO4 as the active material and used as cathodes with Li as the anode, and the assembled LIBs showed a high energy density of 460 Wh kg-1 at a power density of 250 W kg-1

    An investigation into the use of additive manufacture for the production of metallic bipolar plates for polymer electrolyte fuel cell stacks

    Get PDF
    The bipolar plate is of critical importance to the efficient and long lasting operation of a polymer electrolyte fuel cell (PEMFC) stack. With advances in membrane electrode assembly design, greater attention has been focused on the bipolar plate and the important role it plays. Although carbon composite plates are a likely candidate for the mass introduction of fuel cells, it is metallic plates made from thin strip materials which could deliver significant advantages in terms of part cost, electrical performance and size. However, there are some disadvantages. Firstly, interfacial stability of the metal interconnect is difficult to achieve. Secondly, and the issue addressed here, is the difficultly and cost in developing new plate designs when there are very significant tooling costs associated with manufacture. The use of selective laser melting (SLM: an additive manufacturing technique) was explored to produce metallic bipolar plates for PEMFC as a route to inexpensively test several plate designs without committing to tooling. Crucial to this was proving that, electrically, bipolar plates fabricated by SLM behave similarly to those produced by conventional manufacturing techniques. This research presents the development of a small stack to compare the short term performance of metallic plates made by machining against those made by SLM. Experimental results demonstrate that the cell performance in this case was unaffected by the manufacturing method used and it is therefore concluded that additive manufacturing could be a very useful tool to aid the rapid development of metallic bipolar plate designs

    Recent advances in acoustic diagnostics for electrochemical power systems

    Get PDF
    Acknowledgments The authors would like to gratefully acknowledge the EPSRC for supporting the electrochemical research in the Electrochemical Innovation Lab (EP/R020973/1; EP/R023581/1; EP/N032888/1; EP/R023581/1; EP/P009050/1; EP/M014371/1; EP/M009394; EP/L015749/1; EP/K038656/1) and Innovate UK for funding the VALUABLE project (Grant No. 104182). The authors would also like to acknowledge the Royal Academy of Engineering for funding Robinson and Shearing through ICRF1718\1\34 and CiET1718 respectively and the Faraday Institution (EP/S00353/1, Grant Nos. FIRG003, FIRG014). The authors also acknowledge the STFC for supporting Shearing and Brett (ST/K00171X/1) and ACEA for supporting ongoing research at the EIL. Support from the National Measurement System of the UK Department for Business, Energy and Industrial Strategy is also gratefully acknowledged.Peer reviewedPublisher PD

    Marshall Space Flight Center Research and Technology Report 2019

    Get PDF
    Today, our calling to explore is greater than ever before, and here at Marshall Space Flight Centerwe make human deep space exploration possible. A key goal for Artemis is demonstrating and perfecting capabilities on the Moon for technologies needed for humans to get to Mars. This years report features 10 of the Agencys 16 Technology Areas, and I am proud of Marshalls role in creating solutions for so many of these daunting technical challenges. Many of these projects will lead to sustainable in-space architecture for human space exploration that will allow us to travel to the Moon, on to Mars, and beyond. Others are developing new scientific instruments capable of providing an unprecedented glimpse into our universe. NASA has led the charge in space exploration for more than six decades, and through the Artemis program we will help build on our work in low Earth orbit and pave the way to the Moon and Mars. At Marshall, we leverage the skills and interest of the international community to conduct scientific research, develop and demonstrate technology, and train international crews to operate further from Earth for longer periods of time than ever before first at the lunar surface, then on to our next giant leap, human exploration of Mars. While each project in this report seeks to advance new technology and challenge conventions, it is important to recognize the diversity of activities and people supporting our mission. This report not only showcases the Centers capabilities and our partnerships, it also highlights the progress our people have achieved in the past year. These scientists, researchers and innovators are why Marshall and NASA will continue to be a leader in innovation, exploration, and discovery for years to come
    corecore