248 research outputs found

    Machine Learning for Financial Prediction Under Regime Change Using Technical Analysis: A Systematic Review

    Get PDF
    Recent crises, recessions and bubbles have stressed the non-stationary nature and the presence of drastic structural changes in the financial domain. The most recent literature suggests the use of conventional machine learning and statistical approaches in this context. Unfortunately, several of these techniques are unable or slow to adapt to changes in the price-generation process. This study aims to survey the relevant literature on Machine Learning for financial prediction under regime change employing a systematic approach. It reviews key papers with a special emphasis on technical analysis. The study discusses the growing number of contributions that are bridging the gap between two separate communities, one focused on data stream learning and the other on economic research. However, it also makes apparent that we are still in an early stage. The range of machine learning algorithms that have been tested in this domain is very wide, but the results of the study do not suggest that currently there is a specific technique that is clearly dominant

    Modelling and trading the Greek stock market with gene expression and genetic programing algorithms

    Get PDF
    This paper presents an application of the gene expression programming (GEP) and integrated genetic programming (GP) algorithms to the modelling of ASE 20 Greek index. GEP and GP are robust evolutionary algorithms that evolve computer programs in the form of mathematical expressions, decision trees or logical expressions. The results indicate that GEP and GP produce significant trading performance when applied to ASE 20 and outperform the well-known existing methods. The trading performance of the derived models is further enhanced by applying a leverage filter

    The History of the Quantitative Methods in Finance Conference Series. 1992-2007

    Get PDF
    This report charts the history of the Quantitative Methods in Finance (QMF) conference from its beginning in 1993 to the 15th conference in 2007. It lists alphabetically the 1037 speakers who presented at all 15 conferences and the titles of their papers.

    Improving risk-adjusted performance in high frequency trading using interval type-2 fuzzy logic

    Get PDF
    In this paper, we investigate the ability of higher order fuzzy systems to handle increased uncertainty, mostly induced by the market microstructure noise inherent in a high frequency trading (HFT) scenario. Whilst many former studies comparing type-1 and type-2 Fuzzy Logic Systems (FLSs) focus on error reduction or market direction accuracy, our interest is predominantly risk-adjusted performance and more in line with both trading practitioners and upcoming regulatory regimes. We propose an innovative approach to design an interval type-2 model which is based on a generalisation of the popular type-1 ANFIS model. The significance of this work stems from the contributions as a result of introducing type-2 fuzzy sets in intelligent trading algorithms, with the objective to improve the risk-adjusted performance with minimal increase in the design and computational complexity. Overall, the proposed ANFIS/T2 model scores significant performance improvements when compared to both standard ANFIS and Buy-and-Hold methods. As a further step, we identify a relationship between the increased trading performance benefits of the proposed type-2 model and higher levels of microstructure noise. The results resolve a desirable need for practitioners, researchers and regulators in the design of expert and intelligent systems for better management of risk in the field of HFT

    Forecasting tools and probabilistic scheduling approach incorporatins renewables uncertainty for the insular power systems industry

    Get PDF
    Nowadays, the paradigm shift in the electricity sector and the advent of the smart grid, along with the growing impositions of a gradual reduction of greenhouse gas emissions, pose numerous challenges related with the sustainable management of power systems. The insular power systems industry is heavily dependent on imported energy, namely fossil fuels, and also on seasonal tourism behavior, which strongly influences the local economy. In comparison with the mainland power system, the behavior of insular power systems is highly influenced by the stochastic nature of the renewable energy sources available. The insular electricity grid is particularly sensitive to power quality parameters, mainly to frequency and voltage deviations, and a greater integration of endogenous renewables potential in the power system may affect the overall reliability and security of energy supply, so singular care should be placed in all forecasting and system operation procedures. The goals of this thesis are focused on the development of new decision support tools, for the reliable forecasting of market prices and wind power, for the optimal economic dispatch and unit commitment considering renewable generation, and for the smart control of energy storage systems. The new methodologies developed are tested in real case studies, demonstrating their computational proficiency comparatively to the current state-of-the-art

    Evolving neural networks for static single-position automated trading

    Get PDF
    This paper presents an approach to single-position, intraday automated trading based on a neurogenetic algorithm. An artificial neural network is evolved to provide trading signals to a simple automated trading agent. The neural network uses open, high, low, and close quotes of the selected financial instrument from the previous day, as well as a selection of the most popular technical indicators, to decide whether to take a single long or short position at market open. The position is then closed as soon as a given profit target is met or at market close. Experimental results indicate that, despite its simplicity, both in terms of input data and in terms of trading strategy, such an approach to automated trading may yield significant returns

    Computational intelligence approaches for energy load forecasting in smart energy management grids: state of the art, future challenges, and research directions and Research Directions

    Get PDF
    Energy management systems are designed to monitor, optimize, and control the smart grid energy market. Demand-side management, considered as an essential part of the energy management system, can enable utility market operators to make better management decisions for energy trading between consumers and the operator. In this system, a priori knowledge about the energy load pattern can help reshape the load and cut the energy demand curve, thus allowing a better management and distribution of the energy in smart grid energy systems. Designing a computationally intelligent load forecasting (ILF) system is often a primary goal of energy demand management. This study explores the state of the art of computationally intelligent (i.e., machine learning) methods that are applied in load forecasting in terms of their classification and evaluation for sustainable operation of the overall energy management system. More than 50 research papers related to the subject identified in existing literature are classified into two categories: namely the single and the hybrid computational intelligence (CI)-based load forecasting technique. The advantages and disadvantages of each individual techniques also discussed to encapsulate them into the perspective into the energy management research. The identified methods have been further investigated by a qualitative analysis based on the accuracy of the prediction, which confirms the dominance of hybrid forecasting methods, which are often applied as metaheurstic algorithms considering the different optimization techniques over single model approaches. Based on extensive surveys, the review paper predicts a continuous future expansion of such literature on different CI approaches and their optimizations with both heuristic and metaheuristic methods used for energy load forecasting and their potential utilization in real-time smart energy management grids to address future challenges in energy demand managemen

    Computational Intelligence Applied to Financial Price Prediction: A State of the Art Review

    Get PDF
    The following work aims to review the most important research from computational intelligence applied to the financial price prediction problem. The article is organized as follows: The first section summarizes the role of predictability in the Neoclassical financial world. This section also criticizes the zero predictability framework. The second section presents the main computational intelligence techniques applied to financial price prediction. The third section depicts common features of revised works

    Tracking economic growth by evolving expectations via genetic programming: A two-step approach

    Get PDF
    The main objective of this study is to present a two-step approach to generate estimates of economic growth based on agents’ expectations from tendency surveys. First, we design a genetic programming experiment to derive mathematical functional forms that approximate the target variable by combining survey data on expectations about different economic variables. We use evolutionary algorithms to estimate a symbolic regression that links survey-based expectations to a quantitative variable used as a yardstick (economic growth). In a second step, this set of empirically-generated proxies of economic growth are linearly combined to track the evolution of GDP. To evaluate the forecasting performance of the generated estimates of GDP, we use them to assess the impact of the 2008 financial crisis on the accuracy of agents' expectations about the evolution of the economic activity in 28 countries of the OECD. While in most economies we find an improvement in the capacity of agents' to anticipate the evolution of GDP after the crisis, predictive accuracy worsens in relation to the period prior to the crisis. The most accurate GDP forecasts are obtained for Sweden, Austria and Finland
    • …
    corecore