37 research outputs found

    From metaheuristics to learnheuristics: Applications to logistics, finance, and computing

    Get PDF
    Un gran nombre de processos de presa de decisions en sectors estratĂšgics com el transport i la producciĂł representen problemes NP-difĂ­cils. Sovint, aquests processos es caracteritzen per alts nivells d'incertesa i dinamisme. Les metaheurĂ­stiques sĂłn mĂštodes populars per a resoldre problemes d'optimitzaciĂł difĂ­cils en temps de cĂ lcul raonables. No obstant aixĂČ, sovint assumeixen que els inputs, les funcions objectiu, i les restriccions sĂłn deterministes i conegudes. Aquests constitueixen supĂČsits forts que obliguen a treballar amb problemes simplificats. Com a conseqĂŒĂšncia, les solucions poden conduir a resultats pobres. Les simheurĂ­stiques integren la simulaciĂł a les metaheurĂ­stiques per resoldre problemes estocĂ stics d'una manera natural. AnĂ logament, les learnheurĂ­stiques combinen l'estadĂ­stica amb les metaheurĂ­stiques per fer front a problemes en entorns dinĂ mics, en quĂš els inputs poden dependre de l'estructura de la soluciĂł. En aquest context, les principals contribucions d'aquesta tesi sĂłn: el disseny de les learnheurĂ­stiques, una classificaciĂł dels treballs que combinen l'estadĂ­stica / l'aprenentatge automĂ tic i les metaheurĂ­stiques, i diverses aplicacions en transport, producciĂł, finances i computaciĂł.Un gran nĂșmero de procesos de toma de decisiones en sectores estratĂ©gicos como el transporte y la producciĂłn representan problemas NP-difĂ­ciles. Frecuentemente, estos problemas se caracterizan por altos niveles de incertidumbre y dinamismo. Las metaheurĂ­sticas son mĂ©todos populares para resolver problemas difĂ­ciles de optimizaciĂłn de manera rĂĄpida. Sin embargo, suelen asumir que los inputs, las funciones objetivo y las restricciones son deterministas y se conocen de antemano. Estas fuertes suposiciones conducen a trabajar con problemas simplificados. Como consecuencia, las soluciones obtenidas pueden tener un pobre rendimiento. Las simheurĂ­sticas integran simulaciĂłn en metaheurĂ­sticas para resolver problemas estocĂĄsticos de una manera natural. De manera similar, las learnheurĂ­sticas combinan aprendizaje estadĂ­stico y metaheurĂ­sticas para abordar problemas en entornos dinĂĄmicos, donde los inputs pueden depender de la estructura de la soluciĂłn. En este contexto, las principales aportaciones de esta tesis son: el diseño de las learnheurĂ­sticas, una clasificaciĂłn de trabajos que combinan estadĂ­stica / aprendizaje automĂĄtico y metaheurĂ­sticas, y varias aplicaciones en transporte, producciĂłn, finanzas y computaciĂłn.A large number of decision-making processes in strategic sectors such as transport and production involve NP-hard problems, which are frequently characterized by high levels of uncertainty and dynamism. Metaheuristics have become the predominant method for solving challenging optimization problems in reasonable computing times. However, they frequently assume that inputs, objective functions and constraints are deterministic and known in advance. These strong assumptions lead to work on oversimplified problems, and the solutions may demonstrate poor performance when implemented. Simheuristics, in turn, integrate simulation into metaheuristics as a way to naturally solve stochastic problems, and, in a similar fashion, learnheuristics combine statistical learning and metaheuristics to tackle problems in dynamic environments, where inputs may depend on the structure of the solution. The main contributions of this thesis include (i) a design for learnheuristics; (ii) a classification of works that hybridize statistical and machine learning and metaheuristics; and (iii) several applications for the fields of transport, production, finance and computing

    Traveling Salesman Problem

    Get PDF
    This book is a collection of current research in the application of evolutionary algorithms and other optimal algorithms to solving the TSP problem. It brings together researchers with applications in Artificial Immune Systems, Genetic Algorithms, Neural Networks and Differential Evolution Algorithm. Hybrid systems, like Fuzzy Maps, Chaotic Maps and Parallelized TSP are also presented. Most importantly, this book presents both theoretical as well as practical applications of TSP, which will be a vital tool for researchers and graduate entry students in the field of applied Mathematics, Computing Science and Engineering

    Approches générales de résolution pour les problÚmes multi-attributs de tournées de véhicules et confection d'horaires

    Full text link
    ThĂšse rĂ©alisĂ©e en cotutelle entre l'UniversitĂ© de MontrĂ©al et l'UniversitĂ© de Technologie de TroyesLe problĂšme de tournĂ©es de vĂ©hicules (VRP) implique de planifier les itinĂ©raires d'une flotte de vĂ©hicules afin de desservir un ensemble de clients Ă  moindre coĂ»t. Ce problĂšme d'optimisation combinatoire NP-difficile apparait dans de nombreux domaines d'application, notamment en logistique, tĂ©lĂ©communications, robotique ou gestion de crise dans des contextes militaires et humanitaires. Ces applications amĂšnent diffĂ©rents contraintes, objectifs et dĂ©cisions supplĂ©mentaires ; des "attributs" qui viennent complĂ©ter les formulations classiques du problĂšme. Les nombreux VRP Multi-Attributs (MAVRP) qui s'ensuivent sont le support d'une littĂ©rature considĂ©rable, mais qui manque de mĂ©thodes gĂ©nĂ©ralistes capables de traiter efficacement un Ă©ventail significatif de variantes. Par ailleurs, la rĂ©solution de problĂšmes "riches", combinant de nombreux attributs, pose d'importantes difficultĂ©s mĂ©thodologiques. Cette thĂšse contribue Ă  relever ces dĂ©fis par le biais d'analyses structurelles des problĂšmes, de dĂ©veloppements de stratĂ©gies mĂ©taheuristiques, et de mĂ©thodes unifiĂ©es. Nous prĂ©sentons tout d'abord une Ă©tude transversale des concepts Ă  succĂšs de 64 mĂ©ta-heuristiques pour 15 MAVRP afin d'en cerner les "stratĂ©gies gagnantes". Puis, nous analysons les problĂšmes et algorithmes d'ajustement d'horaires en prĂ©sence d'une sĂ©quence de tĂąches fixĂ©e, appelĂ©s problĂšmes de "timing". Ces mĂ©thodes, dĂ©veloppĂ©es indĂ©pendamment dans diffĂ©rents domaines de recherche liĂ©s au transport, ordonnancement, allocation de ressource et mĂȘme rĂ©gression isotonique, sont unifiĂ©s dans une revue multidisciplinaire. Un algorithme gĂ©nĂ©tique hybride efficace est ensuite proposĂ©, combinant l'exploration large des mĂ©thodes Ă©volutionnaires, les capacitĂ©s d'amĂ©lioration agressive des mĂ©taheuristiques Ă  voisinage, et une Ă©valuation bi-critĂšre des solutions considĂ©rant coĂ»t et contribution Ă  la diversitĂ© de la population. Les meilleures solutions connues de la littĂ©rature sont retrouvĂ©es ou amĂ©liorĂ©es pour le VRP classique ainsi que des variantes avec multiples dĂ©pĂŽts et pĂ©riodes. La mĂ©thode est Ă©tendue aux VRP avec contraintes de fenĂȘtres de temps, durĂ©e de route, et horaires de conducteurs. Ces applications mettent en jeu de nouvelles mĂ©thodes d'Ă©valuation efficaces de contraintes temporelles relaxĂ©es, des phases de dĂ©composition, et des recherches arborescentes pour l'insertion des pauses des conducteurs. Un algorithme de gestion implicite du placement des dĂ©pĂŽts au cours de recherches locales, par programmation dynamique, est aussi proposĂ©. Des Ă©tudes expĂ©rimentales approfondies dĂ©montrent la contribution notable des nouvelles stratĂ©gies au sein de plusieurs cadres mĂ©ta-heuristiques. Afin de traiter la variĂ©tĂ© des attributs, un cadre de rĂ©solution heuristique modulaire est prĂ©sentĂ© ainsi qu'un algorithme gĂ©nĂ©tique hybride unifiĂ© (UHGS). Les attributs sont gĂ©rĂ©s par des composants Ă©lĂ©mentaires adaptatifs. Des expĂ©rimentations sur 26 variantes du VRP et 39 groupes d'instances dĂ©montrent la performance remarquable de UHGS qui, avec une unique implĂ©mentation et paramĂ©trage, Ă©galise ou surpasse les nombreux algorithmes dĂ©diĂ©s, issus de plus de 180 articles, rĂ©vĂ©lant ainsi que la gĂ©nĂ©ralitĂ© ne s'obtient pas forcĂ©ment aux dĂ©pends de l'efficacitĂ© pour cette classe de problĂšmes. Enfin, pour traiter les problĂšmes riches, UHGS est Ă©tendu au sein d'un cadre de rĂ©solution parallĂšle coopĂ©ratif Ă  base de dĂ©composition, d'intĂ©gration de solutions partielles, et de recherche guidĂ©e. L'ensemble de ces travaux permet de jeter un nouveau regard sur les MAVRP et les problĂšmes de timing, leur rĂ©solution par des mĂ©thodes mĂ©ta-heuristiques, ainsi que les mĂ©thodes gĂ©nĂ©ralistes pour l'optimisation combinatoire.The Vehicle Routing Problem (VRP) involves designing least cost delivery routes to service a geographically-dispersed set of customers while taking into account vehicle-capacity constraints. This NP-hard combinatorial optimization problem is linked with multiple applications in logistics, telecommunications, robotics, crisis management in military and humanitarian frameworks, among others. Practical routing applications are usually quite distinct from the academic cases, encompassing additional sets of specific constraints, objectives and decisions which breed further new problem variants. The resulting "Multi-Attribute" Vehicle Routing Problems (MAVRP) are the support of a vast literature which, however, lacks unified methods capable of addressing multiple MAVRP. In addition, some "rich" VRPs, i.e. those that involve several attributes, may be difficult to address because of the wide array of combined and possibly antagonistic decisions they require. This thesis contributes to address these challenges by means of problem structure analysis, new metaheuristics and unified method developments. The "winning strategies" of 64 state-of-the-art algorithms for 15 different MAVRP are scrutinized in a unifying review. Another analysis is targeted on "timing" problems and algorithms for adjusting the execution dates of a given sequence of tasks. Such methods, independently studied in different research domains related to routing, scheduling, resource allocation, and even isotonic regression are here surveyed in a multidisciplinary review. A Hybrid Genetic Search with Advanced Diversity Control (HGSADC) is then introduced, which combines the exploration breadth of population-based evolutionary search, the aggressive-improvement capabilities of neighborhood-based metaheuristics, and a bi-criteria evaluation of solutions based on cost and diversity measures. Results of remarkable quality are achieved on classic benchmark instances of the capacitated VRP, the multi-depot VRP, and the periodic VRP. Further extensions of the method to VRP variants with constraints on time windows, limited route duration, and truck drivers' statutory pauses are also proposed. New route and neighborhood evaluation procedures are introduced to manage penalized infeasible solutions w.r.t. to time-window and duration constraints. Tree-search procedures are used for drivers' rest scheduling, as well as advanced search limitation strategies, memories and decomposition phases. A dynamic programming-based neighborhood search is introduced to optimally select the depot, vehicle type, and first customer visited in the route during local searches. The notable contribution of these new methodological elements is assessed within two different metaheuristic frameworks. To further advance general-purpose MAVRP methods, we introduce a new component-based heuristic resolution framework and a Unified Hybrid Genetic Search (UHGS), which relies on modular self-adaptive components for addressing problem specifics. Computational experiments demonstrate the groundbreaking performance of UHGS. With a single implementation, unique parameter setting and termination criterion, this algorithm matches or outperforms all current problem-tailored methods from more than 180 articles, on 26 vehicle routing variants and 39 benchmark sets. To address rich problems, UHGS was included in a new parallel cooperative solution framework called "Integrative Cooperative Search (ICS)", based on problem decompositions, partial solutions integration, and global search guidance. This compendium of results provides a novel view on a wide range of MAVRP and timing problems, on efficient heuristic searches, and on general-purpose solution methods for combinatorial optimization problems
    corecore