23 research outputs found

    Development of a new robust hybrid automata algorithm based on surface electromyography (SEMG) signal for instrumented wheelchair control

    Get PDF
    Instrumented wheelchair operates based on surface electromyography (sEMG) is one of alternative to assist impairment person for mobility. SEMG is chosen due to good in accuracy and easier preparation to place the electrodes. Motor neuron transmit electrical potential to muscle fibre to perform isometric, concentric or eccentric contraction. These electrical changes that is called Motor Unit Action Potential (MUAP) can be acquired and amplified by electrodes located on targeted muscles changes can be recorded and analysed using sEMG devices. But, sEMG device cost up to USD 2,100 for a sEMG data acquisition device that available on market is one of the drawback to be used by impairment person that most of them has financial problem due to unable to work like before. In addition, it is a closed source system that cannot be modified to improve the accuracy and adding more features. Open source system such as Arduino has limitation of specifications that makes able to apply nonpattern recognition control methods which is simpler and easier compared to pattern recognition. However, classification accuracy is lower than pattern recognition and it cannot be applied to higher number participants from different background and gender. This research aims are to develop an open-source Arduino based sEMG data acquisition device by formulating hybrid automata algorithm to differentiate MUAP activity during wheelchair propulsion. Addition of hybrid automata algorithm to run pattern and non-pattern recognition based control methods is an advantage to increase accuracy in differentiating forward stroke or hand return activity. Electrodes are placed on Biceps (BIC), Triceps (TRI), Extensor (EXT), Flexor (FIX) and MUAP activity recorded for 30 healthy persons. Then, experiment result was validated with simulation result using OpenSim biomedical modelling software. Mean, standard deviation (SD), confidence interval (CI) and maximum point different (MPD) of MUAP were calculated and to be used as thresholds for non-pattern recognition control method in method selection experiment. Meanwhile, pattern recognition is using Probability Density Function (PDF) to determine MUAP according to type of activities. Total of ten control methods determined from population and individual data were tested against another 10 healthy persons to evaluate the algorithm performance. Assessment of each control method done by misclassification matrix looking at True Positive (TP) and False Negative (FN) of power assist system activation period. Developed sEMG data acquisition device that is operated by Arduino MEGA 2560 and Myoware muscle sensors with sampling rate of above 400Hz successfully recorded MUAP from four arm muscles. Furthermore, 2.5 ms of average data latency for device to record, analyse, validate and creating commands to activate the power assist system. Data obtained from the device shows that most active muscle during wheelchair propulsion is TRI, followed by BIC and matched to OpenSim simulation result. In method selection experiment, 96.28% of average accuracy was achieved and different control methods were selected by misclassification matrix for each of persons. This method would be a control method to activate power assist system and selected based on conditions set in the algorithm. These findings indicated that open source Arduino board is capable of running real time pattern, non-pattern recognition based control methods by producing classification accuracy up to 99.48% even though it is known as just a microcontroller that has limitation to run complex classifiers. At the same time, a device that cost less than USD200 has 400Hz of sampling rate is as good as closed source device that is come with expensive price tag to own it. Based on algorithm evaluation, it shows that one control method couldn’t fit to all persons as per proven in method selection experiment. Different person has different control method that suit them the most. Lastly, BIC and TRI can be reference muscles to activate assistive device in instrumented wheelchair that is using propulsion as indication

    A Brain-Inspired Trust Management Model to Assure Security in a Cloud based IoT Framework for Neuroscience Applications

    Get PDF
    Rapid popularity of Internet of Things (IoT) and cloud computing permits neuroscientists to collect multilevel and multichannel brain data to better understand brain functions, diagnose diseases, and devise treatments. To ensure secure and reliable data communication between end-to-end (E2E) devices supported by current IoT and cloud infrastructure, trust management is needed at the IoT and user ends. This paper introduces a Neuro-Fuzzy based Brain-inspired trust management model (TMM) to secure IoT devices and relay nodes, and to ensure data reliability. The proposed TMM utilizes node behavioral trust and data trust estimated using Adaptive Neuro-Fuzzy Inference System and weighted-additive methods respectively to assess the nodes trustworthiness. In contrast to the existing fuzzy based TMMs, the NS2 simulation results confirm the robustness and accuracy of the proposed TMM in identifying malicious nodes in the communication network. With the growing usage of cloud based IoT frameworks in Neuroscience research, integrating the proposed TMM into the existing infrastructure will assure secure and reliable data communication among the E2E devices.Comment: 17 pages, 10 figures, 2 table

    PCA and deep learning based myoelectric grasping control of a prosthetic hand

    Get PDF
    Background For the functional control of prosthetic hand, it is insufficient to obtain only the motion pattern information. As far as practicality is concerned, the control of the prosthetic hand force is indispensable. The application value of prosthetic hand will be greatly improved if the stable grip of prosthetic hand can be achieved. To address this problem, in this study, a bio-signal control method for grasping control of a prosthetic hand is proposed to improve patient’s sense of using prosthetic hand and the thus improving the quality of life. Methods A MYO gesture control armband is used to collect the surface electromyographic (sEMG) signals from the upper limb. The overlapping sliding window scheme are applied for data segmentation and the correlated features are extracted from each segmented data. Principal component analysis (PCA) methods are then deployed for dimension reduction. Deep neural network is used to generate sEMG-force regression model for force prediction at different levels. The predicted force values are input to a fuzzy controller for the grasping control of a prosthetic hand. A vibration feedback device is used to feed grasping force value back to patient’s arm to improve patient’s sense of using prosthetic hand and realize accurate grasping. To test the effectiveness of the scheme, 15 able-bodied subjects participated in the experiments. Results The classification results indicated that 8-channel sEMG applying all four time-domain features, with PCA reduction from 32 to 8 dimensions results in the highest classification accuracy. Based on the experimental results from 15 participants, the average recognition rate is over 95%. On the other hand, from the statistical results of standard deviation, the between-subject variations ranges from 3.58 to 1.25%, proving that the robustness and stability of the proposed approach. Conclusions The method proposed hereto control grasping power through the patient’s own sEMG signal, which achieves a high recognition rate to improve the success rate of grip and increases the sense of operation and also brings the gospel for upper extremity amputation patients

    Application of Artificial Intelligence in predicting earthquakes: state-of-the-art and future challenges

    Get PDF
    Predicting the time, location and magnitude of an earthquake is a challenging job as an earthquake does not show specific patterns resulting in inaccurate predictions. Techniques based on Artificial Intelligence (AI) are well known for their capability to find hidden patterns in data. In the case of earthquake prediction, these models also produce a promising outcome. This work systematically explores the contributions made to date in earthquake prediction using AI-based techniques. A total of 84 scientific research papers, which reported the use of AI-based techniques in earthquake prediction, have been selected from different academic databases. These studies include a range of AI techniques including rule-based methods, shallow machine learning and deep learning algorithms. Covering all existing AI-based techniques in earthquake prediction, this paper provides an account of the available methodologies and a comparative analysis of their performances. The performance comparison has been reported from the perspective of used datasets and evaluation metrics. Furthermore, using comparative analysis of performances the paper aims to facilitate the selection of appropriate techniques for earthquake prediction. Towards the end, it outlines some open challenges and potential research directions in the field

    Smart Sensors for Healthcare and Medical Applications

    Get PDF
    This book focuses on new sensing technologies, measurement techniques, and their applications in medicine and healthcare. Specifically, the book briefly describes the potential of smart sensors in the aforementioned applications, collecting 24 articles selected and published in the Special Issue “Smart Sensors for Healthcare and Medical Applications”. We proposed this topic, being aware of the pivotal role that smart sensors can play in the improvement of healthcare services in both acute and chronic conditions as well as in prevention for a healthy life and active aging. The articles selected in this book cover a variety of topics related to the design, validation, and application of smart sensors to healthcare

    Development and Evaluation of a Simulation System of Electric-Powered Wheelchairs for Training Purposes

    Get PDF
    NĂŁo consta

    Recent Advances in Motion Analysis

    Get PDF
    The advances in the technology and methodology for human movement capture and analysis over the last decade have been remarkable. Besides acknowledged approaches for kinematic, dynamic, and electromyographic (EMG) analysis carried out in the laboratory, more recently developed devices, such as wearables, inertial measurement units, ambient sensors, and cameras or depth sensors, have been adopted on a wide scale. Furthermore, computational intelligence (CI) methods, such as artificial neural networks, have recently emerged as promising tools for the development and application of intelligent systems in motion analysis. Thus, the synergy of classic instrumentation and novel smart devices and techniques has created unique capabilities in the continuous monitoring of motor behaviors in different fields, such as clinics, sports, and ergonomics. However, real-time sensing, signal processing, human activity recognition, and characterization and interpretation of motion metrics and behaviors from sensor data still representing a challenging problem not only in laboratories but also at home and in the community. This book addresses open research issues related to the improvement of classic approaches and the development of novel technologies and techniques in the domain of motion analysis in all the various fields of application

    Special oils for halal and safe cosmetics

    Get PDF
    Three types of non conventional oils were extracted, analyzed and tested for toxicity. Date palm kernel oil (DPKO), mango kernel oil (MKO) and Ramputan seed oil (RSO). Oil content for tow cultivars of dates Deglect Noor and Moshkan was 9.67% and 7.30%, respectively. The three varieties of mango were found to contain about 10% oil in average. The red yellow types of Ramputan were found to have 11 and 14% oil, respectively. The phenolic compounds in DPKO, MKO and RSO were 0.98, 0.88 and 0.78 mg/ml Gallic acid equivalent, respectively. Oils were analyzed for their fatty acid composition and they are rich in oleic acid C18:1 and showed the presence of (dodecanoic acid) lauric acid C12:0, which reported to appear some antimicrobial activities. All extracted oils, DPKO, MKO and RSO showed no toxic effect using prime shrimp bioassay. Since these oils are stable, melt at skin temperature, have good lubricity and are great source of essential fatty acids; they could be used as highly moisturizing, cleansing and nourishing oils because of high oleic acid content. They are ideal for use in such halal cosmetics such as Science, Engineering and Technology 75 skin care and massage, hair-care, soap and shampoo products

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Actas de SABI2020

    Get PDF
    Los temas salientes incluyen un marcapasos pulmonar que promete complementar y eventualmente sustituir la conocida ventilación mecánica por presión positiva (intubación), el análisis de la marchaespontánea sin costosos equipamientos, las imágenes infrarrojas y la predicción de la salud cardiovascular en temprana edad por medio de la biomecánica arterial
    corecore