6,647 research outputs found

    Hacking Smart Machines with Smarter Ones: How to Extract Meaningful Data from Machine Learning Classifiers

    Full text link
    Machine Learning (ML) algorithms are used to train computers to perform a variety of complex tasks and improve with experience. Computers learn how to recognize patterns, make unintended decisions, or react to a dynamic environment. Certain trained machines may be more effective than others because they are based on more suitable ML algorithms or because they were trained through superior training sets. Although ML algorithms are known and publicly released, training sets may not be reasonably ascertainable and, indeed, may be guarded as trade secrets. While much research has been performed about the privacy of the elements of training sets, in this paper we focus our attention on ML classifiers and on the statistical information that can be unconsciously or maliciously revealed from them. We show that it is possible to infer unexpected but useful information from ML classifiers. In particular, we build a novel meta-classifier and train it to hack other classifiers, obtaining meaningful information about their training sets. This kind of information leakage can be exploited, for example, by a vendor to build more effective classifiers or to simply acquire trade secrets from a competitor's apparatus, potentially violating its intellectual property rights

    Differentially Private Mixture of Generative Neural Networks

    Get PDF
    Generative models are used in a wide range of applications building on large amounts of contextually rich information. Due to possible privacy violations of the individuals whose data is used to train these models, however, publishing or sharing generative models is not always viable. In this paper, we present a novel technique for privately releasing generative models and entire high-dimensional datasets produced by these models. We model the generator distribution of the training data with a mixture of kk generative neural networks. These are trained together and collectively learn the generator distribution of a dataset. Data is divided into kk clusters, using a novel differentially private kernel kk-means, then each cluster is given to separate generative neural networks, such as Restricted Boltzmann Machines or Variational Autoencoders, which are trained only on their own cluster using differentially private gradient descent. We evaluate our approach using the MNIST dataset, as well as call detail records and transit datasets, showing that it produces realistic synthetic samples, which can also be used to accurately compute arbitrary number of counting queries.Comment: A shorter version of this paper appeared at the 17th IEEE International Conference on Data Mining (ICDM 2017). This is the full version, published in IEEE Transactions on Knowledge and Data Engineering (TKDE
    corecore