29,292 research outputs found

    Fruit production forecasting by neuro-fuzzy techniques

    Get PDF
    Neuro-fuzzy techniques are finding a practical application in many fields such as in model identification and forecasting of linear and non-linear systems. This paper presents a neuro-fuzzy model for forecasting the fruit production of some agriculture products (olives, lemons, oranges, cherries and pistachios). The model utilizes a time series of yearly data. The fruit forecasting is based on Adaptive Neural Fuzzy Inference System (ANFIS). ANFIS uses a combination of the least-squares method and the backprobagation gradient descent method to estimate the optimal food forecast parameters for each year. The results are compared to those of an Autoregressive (AR) model and an Autoregressive Moving Average model (ARMA).Fruit forecasting, neuro-fuzzy, ANFIS, AR, ARMA, forecasting, fruit production, Agricultural Finance, Crop Production/Industries,

    Prediction in Photovoltaic Power by Neural Networks

    Get PDF
    The ability to forecast the power produced by renewable energy plants in the short and middle term is a key issue to allow a high-level penetration of the distributed generation into the grid infrastructure. Forecasting energy production is mandatory for dispatching and distribution issues, at the transmission system operator level, as well as the electrical distributor and power system operator levels. In this paper, we present three techniques based on neural and fuzzy neural networks, namely the radial basis function, the adaptive neuro-fuzzy inference system and the higher-order neuro-fuzzy inference system, which are well suited to predict data sequences stemming from real-world applications. The preliminary results concerning the prediction of the power generated by a large-scale photovoltaic plant in Italy confirm the reliability and accuracy of the proposed approaches

    Electricity consumption forecasting using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    Get PDF
    Universiti Tun Hussein Onn Malaysia (UTHM) is a developing Malaysian Technical University. There is a great development of UTHM since its formation in 1993. Therefore, it is crucial to have accurate future electricity consumption forecasting for its future energy management and saving. Even though there are previous works of electricity consumption forecasting using Adaptive Neuro-Fuzzy Inference System (ANFIS), but most of their data are multivariate data. In this study, we have only univariate data of UTHM electricity consumption from January 2009 to December 2018 and wish to forecast 2019 consumption. The univariate data was converted to multivariate and ANFIS was chosen as it carries both advantages of Artificial Neural Network (ANN) and Fuzzy Inference System (FIS). ANFIS yields the MAPE between actual and predicted electricity consumption of 0.4002% which is relatively low if compared to previous works of UTHM electricity forecasting using time series model (11.14%), and first-order fuzzy time series (5.74%), and multiple linear regression (10.62%)

    The Effectiveness of Hybrid Backpropagation Neural Network Model and TSK Fuzzy Inference System for Inflation Forecasting

    Get PDF
    Forecasting may predict the accurate future condition based on the previous circumstance. Problems that may occur are related to forecasting accuracy. This study proposes a combination of two methods: Neural Network (NN) and Fuzzy Inference System (FIS) to accuratelly forecast the inflation rate in Indonesia. Historical data and four external factors were used as system parameters. The external factors in this study were divided into two fuzzy sets. While time series variables were divided into three fuzzy sets. The combination of them generated a lot of fuzzy rules that may reduce the forecasting effectiveness. As a consequence, the less fit fuzzy rules formation would produce a low accuracy. Therefore, grouping all input variables into positive parameters and negative parameters are necessary for efficiency improvement. To evaluate the forecasting results, Root Means Square Error (RMSE) analytical technique was used. Fuzzy Inference System Sugeno was used as the base line. The results showed that the combination of the proposed method has better performance (RMSE=2.154901) than its base line

    Analysis load forecasting of power system using fuzzy logic and artificial neural network

    Get PDF
    Load forecasting is a vital element in the energy management of function and execution purpose throughout the energy power system. Power systems problems are complicated to solve because power systems are huge complex graphically widely distributed and are influenced by many unexpected events. This paper presents the analysis of load forecasting using fuzzy logic (FL), artificial neural network (ANN) and ANFIS. These techniques are utilized for both short term and long-term load forecasting. ANN and ANFIS are used to improve the results obtained through the FL. It also studied the effects of humidity, temperature and previous load on Load Forecasting. The simulation is done by the Simulink environment of MATLAB software

    A Neuro-fuzzy Approach for Predicting Load Peak Profile

    Get PDF
    Load forecasting has many applications for power systems, including energy purchasing and generation, load switching, contract evaluation, and infrastructure development. Load forecasting is a complex mathematical process characterized by random data and a multitude of input variables.To solve load forecasting, two different approaches are used, the traditional and the intelligent one.Intelligent systems have proved their efficiency in load forecasting domain. Adaptive neuro-fuzzy inference systems (ANFIS) are a combination of two intelligent techniques where we can get neural networks and fuzzy logics advantages simultaneously. In this paper, we will forecast night load peak of Algerian power system using multivariate input adaptive neuro-fuzzy inference system (ANFIS) introducing the effect of the temperature and type of the day as input variables

    A hybridwind speed forecasting system based on a 'decomposition and ensemble' strategy and fuzzy time series

    Full text link
    © 2017 by the authors. Licensee MDPI, Basel, Switzerland. Accurate and stable wind speed forecasting is of critical importance in the wind power industry and has measurable influence on power-system management and the stability of market economics. However, most traditional wind speed forecasting models require a large amount of historical data and face restrictions due to assumptions, such as normality postulates. Additionally, any data volatility leads to increased forecasting instability. Therefore, in this paper, a hybrid forecasting system, which combines the 'decomposition and ensemble' strategy and fuzzy time series forecasting algorithm, is proposed that comprises two modules-data pre-processing and forecasting. Moreover, the statistical model, artificial neural network, and Support Vector Regression model are employed to compare with the proposed hybrid system, which is proven to be very effective in forecasting wind speed data affected by noise and instability. The results of these comparisons demonstrate that the hybrid forecasting system can improve the forecasting accuracy and stability significantly, and supervised discretization methods outperform the unsupervised methods for fuzzy time series in most cases

    Stock Market Prediction with Multiple Regression, Fuzzy Type-2 Clustering and Neural Networks

    Get PDF
    AbstractStock market forecasting research offers many challenges and opportunities, with the forecasting of individual stocks or indexes focusing on forecasting either the level (value) of future market prices, or the direction of market price movement. A three-stage stock market prediction system is introduced in this article. In the first phase, Multiple Regression Analysis is applied to define the economic and financial variables which have a strong relationship with the output. In the second phase, Differential Evolution-based type-2 Fuzzy Clustering is implemented to create a prediction model. For the third phase, a Fuzzy type-2 Neural Network is used to perform the reasoning for future stock price prediction. The results of the network simulation show that the suggested model outperforms traditional models for forecasting stock market prices
    • …
    corecore