5,242 research outputs found

    Deeper Text Understanding for IR with Contextual Neural Language Modeling

    Full text link
    Neural networks provide new possibilities to automatically learn complex language patterns and query-document relations. Neural IR models have achieved promising results in learning query-document relevance patterns, but few explorations have been done on understanding the text content of a query or a document. This paper studies leveraging a recently-proposed contextual neural language model, BERT, to provide deeper text understanding for IR. Experimental results demonstrate that the contextual text representations from BERT are more effective than traditional word embeddings. Compared to bag-of-words retrieval models, the contextual language model can better leverage language structures, bringing large improvements on queries written in natural languages. Combining the text understanding ability with search knowledge leads to an enhanced pre-trained BERT model that can benefit related search tasks where training data are limited.Comment: In proceedings of SIGIR 201

    Table Search Using a Deep Contextualized Language Model

    Full text link
    Pretrained contextualized language models such as BERT have achieved impressive results on various natural language processing benchmarks. Benefiting from multiple pretraining tasks and large scale training corpora, pretrained models can capture complex syntactic word relations. In this paper, we use the deep contextualized language model BERT for the task of ad hoc table retrieval. We investigate how to encode table content considering the table structure and input length limit of BERT. We also propose an approach that incorporates features from prior literature on table retrieval and jointly trains them with BERT. In experiments on public datasets, we show that our best approach can outperform the previous state-of-the-art method and BERT baselines with a large margin under different evaluation metrics.Comment: Accepted at SIGIR 2020 (Long

    Efficient Document Re-Ranking for Transformers by Precomputing Term Representations

    Full text link
    Deep pretrained transformer networks are effective at various ranking tasks, such as question answering and ad-hoc document ranking. However, their computational expenses deem them cost-prohibitive in practice. Our proposed approach, called PreTTR (Precomputing Transformer Term Representations), considerably reduces the query-time latency of deep transformer networks (up to a 42x speedup on web document ranking) making these networks more practical to use in a real-time ranking scenario. Specifically, we precompute part of the document term representations at indexing time (without a query), and merge them with the query representation at query time to compute the final ranking score. Due to the large size of the token representations, we also propose an effective approach to reduce the storage requirement by training a compression layer to match attention scores. Our compression technique reduces the storage required up to 95% and it can be applied without a substantial degradation in ranking performance.Comment: Accepted at SIGIR 2020 (long
    • …
    corecore