177,808 research outputs found

    A High Quality Text-To-Speech System Composed of Multiple Neural Networks

    Full text link
    While neural networks have been employed to handle several different text-to-speech tasks, ours is the first system to use neural networks throughout, for both linguistic and acoustic processing. We divide the text-to-speech task into three subtasks, a linguistic module mapping from text to a linguistic representation, an acoustic module mapping from the linguistic representation to speech, and a video module mapping from the linguistic representation to animated images. The linguistic module employs a letter-to-sound neural network and a postlexical neural network. The acoustic module employs a duration neural network and a phonetic neural network. The visual neural network is employed in parallel to the acoustic module to drive a talking head. The use of neural networks that can be retrained on the characteristics of different voices and languages affords our system a degree of adaptability and naturalness heretofore unavailable.Comment: Source link (9812006.tar.gz) contains: 1 PostScript file (4 pages) and 3 WAV audio files. If your system does not support Windows WAV files, try a tool like "sox" to translate the audio into a format of your choic

    Research On Text Classification Based On Deep Neural Network

    Get PDF
    Text classification is one of the classic tasks in the field of natural language processing. The goal is to identify the category to which the text belongs. Text categorization is widely used in email detection, sentiment analysis, topic marking and other fields. However, good text representation is the key to improve the performance of natural language processing tasks such as text classification. Traditional text representation adopts bag-of-words model or vector space model, which not only loses the context information of the text, but also faces the problems of high latitude and high sparsity. In recent years, with the increase of data and the improvement of computing performance, the use of deep learning technology to represent and classify texts has attracted great attention. Convolutional neural network, recurrent neural network and recurrent neural network with attention mechanism are used to represent the text, and then to classify the text and other natural language processing tasks, all of which have better performance than the traditional methods. In this paper, we design two sentence-level text representation and classification models based on the deep network. The details are as follows: (1) Text representation and classification model based on bidirectional cyclic and convolutional neural networks-BRCNN. Brcnn's input is the word vector corresponding to each word in the sentence; After using cyclic neural network to extract word order information in sentences, convolution neural network is used to extract higher-level features of sentences. After convolution, the maximum pool operation is used to obtain sentence vectors. At last, softmax classifier is used for classification. Cyclic neural network can capture the word order information in sentences, while convolutional neural network can extract useful features. Experiments on eight text classification tasks show that BRCNN model can get better text feature representation, and the classification accuracy rate is equal to or higher than that of the prior art.. (2) A text representation and classification model based on attention mechanism and convolutional neural network-ACNN. ACNN model uses the recurrent neural network with attention mechanism to obtain the context vector; Then convolution neural network is used to extract more advanced feature information. The maximum pool operation is adopted to obtain a sentence vector; At last, the softmax classifier is used to classify the text. Experiments on eight text classification benchmark data sets show that ACNN improves the stability of model convergence, and can converge to an optimal or local optimal solution better than BRCNN

    Learning to Rank Question-Answer Pairs using Hierarchical Recurrent Encoder with Latent Topic Clustering

    Full text link
    In this paper, we propose a novel end-to-end neural architecture for ranking candidate answers, that adapts a hierarchical recurrent neural network and a latent topic clustering module. With our proposed model, a text is encoded to a vector representation from an word-level to a chunk-level to effectively capture the entire meaning. In particular, by adapting the hierarchical structure, our model shows very small performance degradations in longer text comprehension while other state-of-the-art recurrent neural network models suffer from it. Additionally, the latent topic clustering module extracts semantic information from target samples. This clustering module is useful for any text related tasks by allowing each data sample to find its nearest topic cluster, thus helping the neural network model analyze the entire data. We evaluate our models on the Ubuntu Dialogue Corpus and consumer electronic domain question answering dataset, which is related to Samsung products. The proposed model shows state-of-the-art results for ranking question-answer pairs.Comment: 10 pages, Accepted as a conference paper at NAACL 201
    • …
    corecore