38 research outputs found

    Multisensory bayesian inference depends on synapse maturation during training: Theoretical analysis and neural modeling implementation

    Get PDF
    Recent theoretical and experimental studies suggest that in multisensory conditions, the brain performs a near-optimal Bayesian estimate of external events, giving more weight to the more reliable stimuli. However, the neural mechanisms responsible for this behavior, and its progressive maturation in a multisensory environment, are still insufficiently understood. The aim of this letter is to analyze this problem with a neural network model of audiovisual integration, based on probabilistic population coding-the idea that a population of neurons can encode probability functions to perform Bayesian inference. The model consists of two chains of unisensory neurons (auditory and visual) topologically organized. They receive the corresponding input through a plastic receptive field and reciprocally exchange plastic cross-modal synapses, which encode the spatial co-occurrence of visual-auditory inputs. A third chain of multisensory neurons performs a simple sum of auditory and visual excitations. Thework includes a theoretical part and a computer simulation study. We show how a simple rule for synapse learning (consisting of Hebbian reinforcement and a decay term) can be used during training to shrink the receptive fields and encode the unisensory likelihood functions. Hence, after training, each unisensory area realizes a maximum likelihood estimate of stimulus position (auditory or visual). In crossmodal conditions, the same learning rule can encode information on prior probability into the cross-modal synapses. Computer simulations confirm the theoretical results and show that the proposed network can realize a maximum likelihood estimate of auditory (or visual) positions in unimodal conditions and a Bayesian estimate, with moderate deviations from optimality, in cross-modal conditions. Furthermore, the model explains the ventriloquism illusion and, looking at the activity in the multimodal neurons, explains the automatic reweighting of auditory and visual inputs on a trial-by-trial basis, according to the reliability of the individual cues

    Laminar fMRI: applications for cognitive neuroscience

    Get PDF
    The cortex is a massively recurrent network, characterized by feedforward and feedback connections between brain areas as well as lateral connections within an area. Feedforward, horizontal and feedback responses largely activate separate layers of a cortical unit, meaning they can be dissociated by lamina-resolved neurophysiological techniques. Such techniques are invasive and are therefore rarely used in humans. However, recent developments in high spatial resolution fMRI allow for non-invasive, in vivo measurements of brain responses specific to separate cortical layers. This provides an important opportunity to dissociate between feedforward and feedback brain responses, and investigate communication between brain areas at a more fine- grained level than previously possible in the human species. In this review, we highlight recent studies that successfully used laminar fMRI to isolate layer-specific feedback responses in human sensory cortex. In addition, we review several areas of cognitive neuroscience that stand to benefit from this new technological development, highlighting contemporary hypotheses that yield testable predictions for laminar fMRI. We hope to encourage researchers with the opportunity to embrace this development in fMRI research, as we expect that many future advancements in our current understanding of human brain function will be gained from measuring lamina-specific brain responses

    Meta-analyses support a taxonomic model for representations of different categories of audio-visual interaction events in the human brain

    Get PDF
    Our ability to perceive meaningful action events involving objects, people and other animate agents is characterized in part by an interplay of visual and auditory sensory processing and their cross-modal interactions. However, this multisensory ability can be altered or dysfunctional in some hearing and sighted individuals, and in some clinical populations. The present meta-analysis sought to test current hypotheses regarding neurobiological architectures that may mediate audio-visual multisensory processing. Reported coordinates from 82 neuroimaging studies (137 experiments) that revealed some form of audio-visual interaction in discrete brain regions were compiled, converted to a common coordinate space, and then organized along specific categorical dimensions to generate activation likelihood estimate (ALE) brain maps and various contrasts of those derived maps. The results revealed brain regions (cortical “hubs”) preferentially involved in multisensory processing along different stimulus category dimensions, including (1) living versus non-living audio-visual events, (2) audio-visual events involving vocalizations versus actions by living sources, (3) emotionally valent events, and (4) dynamic-visual versus static-visual audio-visual stimuli. These meta-analysis results are discussed in the context of neurocomputational theories of semantic knowledge representations and perception, and the brain volumes of interest are available for download to facilitate data interpretation for future neuroimaging studies

    Behavioral, Neural, and Computational Principles of Bodily Self-Consciousness

    Get PDF
    Recent work in human cognitive neuroscience has linked self-consciousness to the processing of multisensory bodily signals (bodily self-consciousness [BSC]) in fronto-parietal cortex and more posterior temporo-parietal regions. We highlight the behavioral, neurophysiological, neuroimaging, and computational laws that subtend BSC in humans and non-human primates. We propose that BSC includes body-centered perception (hand, face, and trunk), based on the integration of proprioceptive, vestibular, and visual bodily inputs, and involves spatio-temporal mechanisms integrating multisensory bodily stimuli within peripersonal space (PPS). We develop four major constraints of BSC (proprioception, body-related visual information, PPS, and embodiment) and argue that the fronto-parietal and temporo-parietal processing of trunk-centered multisensory signals in PPS is of particular relevance for theoretical models and simulations of BSC and eventually of self-consciousness

    Oscillatory properties of functional connections between sensory areas mediate crossmodal illusory perception

    Get PDF
    The presentation of simple auditory stimuli can significantly impact visual processing and even induce visual illusions, such as the auditory-induced Double Flash Illusion (DFI). These crossmodal processes have been shown to be driven by occipital oscillatory activity within the alpha band. Whether this phenomenon is network specific or can be generalized to other sensory interactions remains unknown. The aim of the current study was to test whether crossmodal interactions between somatosensory-to-visual areas leading to the same (but tactile-induced) DFI share similar properties to the auditory-DFI. We hypothesized that if the effects are mediated by the oscillatory properties of early visual areas per se then the two versions of the illusion should be subtended by the same neurophysiological mechanism (i.e. the speed of alpha frequency). Alternatively, if the oscillatory activity in visual areas predicting this phenomenon is dependent on the specific neural network involved, then it should reflect network-specific oscillatory properties. In line with the latter, results recorded in humans (both genders) show a network-specific oscillatory profile linking the auditory-DFI to occipital alpha oscillations, replicating previous findings, and tactile-DFI to occipital beta oscillations, a rhythm typical of somatosensory processes. These frequency-specific effects are observed for visual (but not auditory or somatosensory) areas and account for auditory-visual connectivity in the alpha band and somatosensory-visual connectivity in the beta band. We conclude that task-dependent visual oscillations reflect network-specific oscillatory properties favouring optimal, directional neural communication timing for sensory binding

    Optimality and limitations of audio-visual integration for cognitive systems

    Get PDF
    Multimodal integration is an important process in perceptual decision-making. In humans, this process has often been shown to be statistically optimal, or near optimal: sensory information is combined in a fashion that minimizes the average error in perceptual representation of stimuli. However, sometimes there are costs that come with the optimization, manifesting as illusory percepts. We review audio-visual facilitations and illusions that are products of multisensory integration, and the computational models that account for these phenomena. In particular, the same optimal computational model can lead to illusory percepts, and we suggest that more studies should be needed to detect and mitigate these illusions, as artifacts in artificial cognitive systems. We provide cautionary considerations when designing artificial cognitive systems with the view of avoiding such artifacts. Finally, we suggest avenues of research toward solutions to potential pitfalls in system design. We conclude that detailed understanding of multisensory integration and the mechanisms behind audio-visual illusions can benefit the design of artificial cognitive systems.Human-Robot Interactio

    The neural dynamics of hierarchical Bayesian causal inference in multisensory perception

    Get PDF
    How do we make inferences about the source of sensory signals? Here, the authors use Bayesian causal modeling and measures of neural activity to show how the brain dynamically codes for and combines sensory signals to draw causal inferences

    Assessing the oscillatory properties of functional connections between sensory areas during crossmodal illusions: A correlational and causal investigation.

    Get PDF
    A comprehensive investigation on multisensory integration is presented whereby three complex studies investigating the role of neuro-oscillatory processes in tactile-visual and auditory-visual illusory tasks were conducted. Utilising EEG scanning we first replicated previous evidence of a correlation between individual alpha frequency and the auditory-induced Double Flash Illusion (DFI). We also provided evidence of a previously unreported correlation between individual beta frequency and the corresponding tactile-induced DFI. In two follow-up studies evidence is also provided of a causal relationship between beta processes and the tactile-induced DFI using a variant of paired associative TMS known as cortico-cortical Paired Associative Stimulation. Here we demonstrated by temporarily reducing occipital beta speed we can subsequently produce reliably predictable changes in the temporal profile of visuo-tactile multisensory processing. Using two control measures across two investigations we provided evidence suggesting that the stimulation that we utilised was both frequency specific and hemisphere specific. From this we concluded that multisensory processes are facilitated by the oscillatory properties of network-specific (auditory-to-visual or somatosensory-to-visual) neural connections favouring optimal, directional neural communication and integration between the senses

    Investigating the Cognitive and Neural Mechanisms underlying Multisensory Perceptual Decision-Making in Humans

    Get PDF
    On a frequent day-to-day basis, we encounter situations that require the formation of decisions based on ambiguous and often incomplete sensory information. Perceptual decision-making defines the process by which sensory information is consolidated and accumulated towards one of multiple possible choice alternatives, which inform our behavioural responses. Perceptual decision-making can be understood both theoretically and neurologically as a process of stochastic sensory evidence accumulation towards some choice threshold. Once this threshold is exceeded, a response is facilitated, informing the overt actions undertaken. Prevalent progress has been made towards understanding the cognitive and neural mechanisms underlying perceptual decision-making. Analyses of Reaction Time (RTs; typically constrained to milliseconds) and choice accuracy; reflecting decision-making behaviour, can be coupled with neuroimaging methodologies; notably electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI), to identify spatiotemporal components representative of the neural signatures corresponding to such accumulation-to-bound decision formation on a single-trial basis. Taken together, these provide us with an experimental framework conceptualising the key computations underlying perceptual decision-making. Despite this, relatively little remains known about the enhancements or alternations to the process of perceptual decision-making from the integration of information across multiple sensory modalities. Consolidating the available sensory evidence requires processing information presented in more than one sensory modality, often near-simultaneously, to exploit the salient percepts for what we term as multisensory (perceptual) decision-making. Specifically, multisensory integration must be considered within the perceptual decision-making framework in order to understand how information becomes stochastically accumulated to inform overt sensory-motor choice behaviours. Recently, substantial progress in research has been made through the application of behaviourally-informed, and/or neurally-informed, modelling approaches to benefit our understanding of multisensory decision-making. In particular, these approaches fit a number of model parameters to behavioural and/or neuroimaging datasets, in order to (a) dissect the constituent internal cognitive and neural processes underlying perceptual decision-making with both multisensory and unisensory information, and (b) mechanistically infer how multisensory enhancements arise from the integration of information across multiple sensory modalities to benefit perceptual decision formation. Despite this, the spatiotemporal locus of the neural and cognitive underpinnings of enhancements from multisensory integration remains subject to debate. In particular, our understanding of which brain regions are predictive of such enhancements, where they arise, and how they influence decision-making behaviours requires further exploration. The current thesis outlines empirical findings from three studies aimed at providing a more complete characterisation of multisensory perceptual decision-making, utilising EEG and accumulation-to-bound modelling methodologies to incorporate both behaviourally-informed and neurally-informed modelling approaches, investigating where, when, and how perceptual improvements arise during multisensory perceptual decision-making. Pointedly, these modelling approaches sought to probe the exerted modulatory influences of three factors: unisensory formulated cross-modal associations (Chapter 2), natural ageing (Chapter 3), and perceptual learning (Chapter 4), on the integral cognitive and neural mechanisms underlying observable benefits towards multisensory decision formation. Chapter 2 outlines secondary analyses, utilising a neurally-informed modelling approach, characterising the spatiotemporal dynamics of neural activity underlying auditory pitch-visual size cross-modal associations. In particular, how unisensory auditory pitch-driven associations benefit perceptual decision formation was functionally probed. EEG measurements were recorded from participants during performance of an Implicit Association Test (IAT), a two-alternative forced-choice (2AFC) paradigm which presents one unisensory stimulus feature per trial for participants to categorise, but manipulates the stimulus feature-response key mappings of auditory pitch-visual size cross-modal associations from unisensory stimuli alone, thus overcoming the issue of mixed selectivity in recorded neural activity prevalent in previous cross-modal associative research, which near-simultaneously presented multisensory stimuli. Categorisations were faster (i.e., lower RTs) when stimulus feature-response key mappings were associatively congruent, compared to associatively incongruent, between the two associative counterparts, thus demonstrating a behavioural benefit to perceptual decision formation. Multivariate Linear Discriminant Analysis (LDA) was used to characterise the spatiotemporal dynamics of EEG activity underpinning IAT performance, in which two EEG components were identified that discriminated neural activity underlying the benefits of associative congruency of stimulus feature-response key mappings. Application of a neurally-informed Hierarchical Drift Diffusion Model (HDDM) demonstrated early sensory processing benefits, with increases in the duration of non-decisional processes with incongruent stimulus feature-response key mappings, and late post-sensory alterations to decision dynamics, with congruent stimulus feature-response key mappings decreasing the quantity of evidence required to facilitate a decision. Hence, we found that the trial-by-trial variability in perceptual decision formation from unisensory facilitated cross-modal associations could be predicted by neural activity within our neurally-informed modelling approach. Next, Chapter 3 outlines cognitive research investigating age-related impacts on the behavioural indices of multisensory perceptual decision-making (i.e., RTs and choice accuracy). Natural ageing has been demonstrated to diversely affect multisensory perceptual decision-making dynamics. However, the constituent cognitive processes affected remain unclear. Specifically, a mechanistic insight reconciling why older adults may exhibit preserved multisensory integrative benefits, yet display generalised perceptual deficits, relative to younger adults, remains inconclusive. To address this limitation, 212 participants performed an online variant of a well-established audiovisual object categorisation paradigm, whereby age-related differences in RTs and choice accuracy (binary responses) between audiovisual (AV), visual (V), and auditory (A) trial types could be assessed between Younger Adults (YAs; Mean ± Standard Deviation = 27.95 ± 5.82 years) and Older Adults (OAs; Mean ± Standard Deviation = 60.96 ± 10.35 years). Hierarchical Drift Diffusion Modelling (HDDM) was fitted to participants’ RTs and binary responses in order to probe age-related impacts on the latent underlying processes of multisensory decision formation. Behavioural results found that whereas OAs were typically slower (i.e., ↑ RTs) and less accurate (i.e., ↓ choice accuracy), relative to YAs across all sensory trial types, they exhibited greater differences in RTs between AV and V trials (i.e., ↑ AV-V RT difference), with no significant effects of choice accuracy, implicating preserved benefits of multisensory integration towards perceptual decision formation. HDDM demonstrated parsimonious fittings for characterising these behavioural discrepancies between YAs and OAs. Notably we found slower rates of sensory evidence accumulation (i.e., ↓ drift rates) for OAs across all sensory trial types, coupled with (1) higher rates of sensory evidence accumulation (i.e., ↑ drift rates) for OAs between AV versus V trial types irrespective of stimulus difficulty, coupled with (2) increased response caution (i.e., ↑ decision boundaries) between AV versus V trial types, and (3) decreased non-decisional processing duration (i.e., ↓ non-decision times) between AV versus V trial types for stimuli of increased difficulty respectively. Our findings suggest that older adults trade-off multisensory decision-making speed for accuracy to preserve enhancements towards perceptual decision formation relative to younger adults. Hence, they display an increased reliance on integrating multimodal information; through the principle of inverse effectiveness, as a compensatory mechanism for a generalised cognitive slowing when processing unisensory information. Overall, our findings demonstrate how computational modelling can reconcile contrasting hypotheses of age-related changes in processes underlying multisensory perceptual decision-making behaviour. Finally, Chapter 4 outlines research probing the exerted influence of perceptual learning on multisensory perceptual decision-making. Views of unisensory perceptual learning imply that improvements in perceptual sensitivity may be due to enhancements in early sensory representations and/or modulations to post-sensory decision dynamics. We sought to assess whether these views could account for improvements in perceptual sensitivity for multisensory stimuli, or even exacerbations of multisensory enhancements towards decision formation, by consolidating the spatiotemporal locus of where and when in the brain they may be observed. We recorded EEG activity from participants who completed the same audiovisual object categorisation paradigm (as outlined in Chapter 3), over three consecutive days. We used single-trial multivariate LDA to characterise the spatiotemporal trajectory of the decision dynamics underlying any observed multisensory benefits both (a) within and (b) between visual, auditory, and audiovisual trial types. While found significant decreases were found in RTs and increases in choice accuracy over testing days, we did not find any significant effects of perceptual learning on multisensory nor unisensory perceptual decision formation. Similarly, EEG analysis did not find any neural components indicative of early or late modulatory effects from perceptual learning in brain activity, which we attribute to (1) a long duration of stimulus presentations (300ms), and (2) a lack of sufficient statistical power for our LDA classifier to discriminate face-versus-car trial types. We end this chapter with considerations for discerning multisensory benefits towards perceptual decision formation, and recommendations for altering our experimental design to observe the effects of perceptual learning as a decision neuromodulator. These findings contribute to literature justifying the increasing relevance of utilising behaviourally-informed and/or neurally-informed modelling approaches for investigating multisensory perceptual decision-making. In particular, a discussion of the underlying cognitive and/or neural mechanisms that can be attributed to the benefits of multisensory integration towards perceptual decision formation, as well as the modulatory impact of the decision modulators in question, can contribute to a theoretical reconciliation that multisensory integrative benefits are not ubiquitous to specific spatiotemporal neural dynamics nor cognitive processes
    corecore