25 research outputs found

    Imaging ionospheric irregularities by earth observation radar satellite

    Get PDF
    The sensitivity of Synthetic Aperture Radar (SAR) satellite signal in the L-band to ionospheric plasma density is used to obtain two-dimensional imaging of ionospheric density irregularities. As an application for equatorial ionosphere, we have recently reported first simultaneous observation of equatorial plasma bubble by the ALOS-2/PALSAR-2 satellite and a ground 630-nm airglow imager in northern Brazil. In this case, SAR ionospheric scintillation are represented as stripe-like signature of radar image over the terrain along the local magnetic field lines near an airglow depletion region. This so-called SAR scintillation stripes are discussed to be the signature of existing small-scale plasma irregularities with the scale size of hundreds of meters associated with equatorial plasma bubbles. We present the observational setup and the interpretation of SAR signal parameters to characterize the two-dimensional ionospheric density structures, and discuss future studies

    A NOVEL PATH LOSS FORECAST MODEL TO SUPPORT DIGITAL TWINS FOR HIGH FREQUENCY COMMUNICATIONS NETWORKS

    Get PDF
    The need for long-distance High Frequency (HF) communications in the 3-30 MHz frequency range seemed to diminish at the end of the 20th century with the advent of space-based communications and the spread of fiber optic-connected digital networks. Renewed interest in HF has emerged as an enabler for operations in austere locations and for its ability to serve as a redundant link when space-based and terrestrial communication channels fail. Communications system designers can create a “digital twin” system to explore the operational advantages and constraints of the new capability. Existing wireless channel models can adequately simulate communication channel conditions with enough fidelity to support digital twin simulations, but only when the transmitter and receiver have clear line of sight or a relatively simple multi-path reflection between them. With over-the-horizon communications, the received signal depends on refractions of the transmitted signal through ionospheric layers. The time-varying nature of the free electron density of the ionosphere affects the resulting path loss between the transmitter and receiver and is difficult to model over several days. This dissertation examined previous efforts to characterize the ionosphere and to develop HF propagation models, including the Voice of America Coverage Analysis Prediction (VOACAP) tool, to support path loss forecasts. Analysis of data from the Weak Signal Propagation Reporter Network (WSPRnet), showed an average Root Mean Squared Error (RMSE) of 12.9 dB between VOACAP predictions and actual propagation reports on the WSPRnet system. To address the significant error in VOACAP forecasts, alternative predictive models were developed, including the Forecasting Ionosphere-Induced Path Loss (FIIPL) model and evaluated against one month of WSPRnet data collected at eight geographically distributed sites. The FIIPL model leveraged a machine learning algorithm, Long Short Term Memory, to generate predictions that reduced the SNR errors to an average of 4.0 dB RMSE. These results could support more accurate 24-hour predictions and provides an accurate model of the channel conditions for digital twin simulations. Advisor: Hamid R. Sharif-Kashan

    Enhanced frequency management for automatic HF radio communication systems

    Get PDF
    The work described in this thesis aims to enhance the frequency management of automatic high frequency (HF) radio communication systems. During the research programme two new frequency management tools were developed; a chirpsounder monitoring tool to provide accuracy enhancement information for propagation prediction programs and an algorithm designed to allow optimisation of signal formats, so that in-band interference is avoided and the overall system throughput rate is increased. Two new HF communication system architectures are presented, which use system design and programming methodologies derived from the fields of artificial intelligence and computer networks.The characteristics of the HF band are presented from a communicator's viewpoint, rather than the generalised, technical approach normally associated with such reviews. The methods employed by current HF communication systems to overcome the inherent time and frequency variability of HF channels are presented in the form of reviews of propagation, natural noise and co-channel interference prediction methods, embedded real-time channel evaluation algorithms and HF communications system architectures. The inadequacies of these current techniques are analysed. The eradication of their shortcomings is the main objective of the work described in the thesis.The short-term inaccuracies associated with current propagation analysis procedures can limit the performance of automatic HF communication systems. An accuracy enhancement methodology is proposed which makes use of measurements made on oblique chirpsounder transmitters. In order to provide accuracy enhancement data, a chirpsounder-based, propagation monitor was constructed. Its implementation and trials are described and methods of using its output to enhance prediction model accuracy are discussed. Ways in which its performance may be improved are detailed.The theory of a technique, termed "template correlation", which provides automatic HF communication systems with signal format adaptation data in order to enable them to avoid in-band interference, is presented. The objective of this work is to enhance the error-free capacity of a channel via adaptation of the signal. The results of computer simulations and laboratory bench trials of template correlation are presented. Enhancements of the technique in the light of the trials results are included.Two proposed design methodologies for automatic HF communication systems are described. The first uses many of the frequency management tools associated with current automatic systems and it combines the information from these using a blackboard-based expert system architecture. The second proposed design is more conceptual than the first. An inductive expert system is employed to produce rules describing the ways in which an automatic HF system should respond to certain path conditions. Examples of how such a system might function are given.The single, most important factor which has enabled the techniques described in this thesis to be feasible is the availability of cheap but powerful microprocessors. Thus the overall philosophy of the work is to improve the performance of automatic HF communication systems via the incorporation of processing power and "intelligent software" into the communication system's terminals

    A three-dimensional regional assimilative model of the ionospheric electron density

    Get PDF
    The focus of this thesis is on the development, implementation, and validation of a three-dimensional regional assimilative model of the ionospheric electron density. Empirical climatological models, like the International Reference Ionosphere (IRI) model (Bilitza et al. 2017), cannot predict the whole ionospheric variability, specifically under disturbed magnetic conditions. The model presented in this work has the purpose to improve the IRI description by implementing a data assimilation procedure, based on ionospheric measurements collected by several ground-based or satellite-based instruments. The first phase of the development of the model, called IRI UPdate (IRI UP), is devoted to update the IRI model by ingesting effective indices (IG12eff and R12eff) calculated after assimilating F2 layer characteristics values, measured by a network of ionosondes or derived by vertical total electron content values measured by a network of Global Navigational Satellite Systems receivers. The ingestion of effective indices in the IRI model allows to significantly improve the F2 layer peak density and height description. Being the F2 layer peak an anchor point for the whole IRI’s vertical electron density profile, such procedure allows to update the whole profile. The second phase of the development of the model is devoted to improve the modeling of the topside part of the ionospheric vertical electron density profile by making use of the IRI UP method and in-situ measurements collected by Swarm satellites. Finally, a procedure called IonoPy, embedding the two aforementioned steps, assimilates the whole bottomside electron density profile measured by an ionosonde, thus further improving the ionospheric plasma description in the bottomside ionosphere. All the procedures described in this thesis have been tested and validated by comparing them with other similar models or with independent datasets, for both quiet and disturbed conditions

    Abstracts on Radio Direction Finding (1899 - 1995)

    Get PDF
    The files on this record represent the various databases that originally composed the CD-ROM issue of "Abstracts on Radio Direction Finding" database, which is now part of the Dudley Knox Library's Abstracts and Selected Full Text Documents on Radio Direction Finding (1899 - 1995) Collection. (See Calhoun record https://calhoun.nps.edu/handle/10945/57364 for further information on this collection and the bibliography). Due to issues of technological obsolescence preventing current and future audiences from accessing the bibliography, DKL exported and converted into the three files on this record the various databases contained in the CD-ROM. The contents of these files are: 1) RDFA_CompleteBibliography_xls.zip [RDFA_CompleteBibliography.xls: Metadata for the complete bibliography, in Excel 97-2003 Workbook format; RDFA_Glossary.xls: Glossary of terms, in Excel 97-2003 Workbookformat; RDFA_Biographies.xls: Biographies of leading figures, in Excel 97-2003 Workbook format]; 2) RDFA_CompleteBibliography_csv.zip [RDFA_CompleteBibliography.TXT: Metadata for the complete bibliography, in CSV format; RDFA_Glossary.TXT: Glossary of terms, in CSV format; RDFA_Biographies.TXT: Biographies of leading figures, in CSV format]; 3) RDFA_CompleteBibliography.pdf: A human readable display of the bibliographic data, as a means of double-checking any possible deviations due to conversion

    Proceedings of the 1st WSEAS International Conference on "Environmental and Geological Science and Engineering (EG'08)"

    Get PDF
    This book contains the proceedings of the 1st WSEAS International Conference on Environmental and Geological Science and Engineering (EG'08) which was held in Malta, September 11-13, 2008. This conference aims to disseminate the latest research and applications in Renewable Energy, Mineral Resources, Natural Hazards and Risks, Environmental Impact Assessment, Urban and Regional Planning Issues, Remote Sensing and GIS, and other relevant topics and applications. The friendliness and openness of the WSEAS conferences, adds to their ability to grow by constantly attracting young researchers. The WSEAS Conferences attract a large number of well-established and leading researchers in various areas of Science and Engineering as you can see from http://www.wseas.org/reports. Your feedback encourages the society to go ahead as you can see in http://www.worldses.org/feedback.htm The contents of this Book are also published in the CD-ROM Proceedings of the Conference. Both will be sent to the WSEAS collaborating indices after the conference: www.worldses.org/indexes In addition, papers of this book are permanently available to all the scientific community via the WSEAS E-Library. Expanded and enhanced versions of papers published in this conference proceedings are also going to be considered for possible publication in one of the WSEAS journals that participate in the major International Scientific Indices (Elsevier, Scopus, EI, ACM, Compendex, INSPEC, CSA .... see: www.worldses.org/indexes) these papers must be of high-quality (break-through work) and a new round of a very strict review will follow. (No additional fee will be required for the publication of the extended version in a journal). WSEAS has also collaboration with several other international publishers and all these excellent papers of this volume could be further improved, could be extended and could be enhanced for possible additional evaluation in one of the editions of these international publishers. Finally, we cordially thank all the people of WSEAS for their efforts to maintain the high scientific level of conferences, proceedings and journals

    Air Force Institute of Technology Research Report 1997

    Get PDF
    This report summarizes the research activities of the Air Force Institute of Technology\u27s Graduate School of Engineering and the Graduate School of Logistics and Acquisition Management. It describes research interests and faculty expertise; list student theses/dissertations; identifies research sponsors and contributions; and outlines the procedure for contacting either school

    COBE's search for structure in the Big Bang

    Get PDF
    The launch of Cosmic Background Explorer (COBE) and the definition of Earth Observing System (EOS) are two of the major events at NASA-Goddard. The three experiments contained in COBE (Differential Microwave Radiometer (DMR), Far Infrared Absolute Spectrophotometer (FIRAS), and Diffuse Infrared Background Experiment (DIRBE)) are very important in measuring the big bang. DMR measures the isotropy of the cosmic background (direction of the radiation). FIRAS looks at the spectrum over the whole sky, searching for deviations, and DIRBE operates in the infrared part of the spectrum gathering evidence of the earliest galaxy formation. By special techniques, the radiation coming from the solar system will be distinguished from that of extragalactic origin. Unique graphics will be used to represent the temperature of the emitting material. A cosmic event will be modeled of such importance that it will affect cosmological theory for generations to come. EOS will monitor changes in the Earth's geophysics during a whole solar color cycle

    FENG Magazine Vol.2 2007/2008

    Get PDF
    corecore