19,882 research outputs found

    Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks

    Get PDF
    The mathematical problem for electrical impedance tomography (EIT) is a highly nonlinear ill-posed inverse problem requiring carefully designed reconstruction procedures to ensure reliable image generation. D-bar methods are based on a rigorous mathematical analysis and provide robust direct reconstructions by using a low-pass filtering of the associated nonlinear Fourier data. Similarly to low-pass filtering of linear Fourier data, only using low frequencies in the image recovery process results in blurred images lacking sharp features, such as clear organ boundaries. Convolutional neural networks provide a powerful framework for post-processing such convolved direct reconstructions. In this paper, we demonstrate that these CNN techniques lead to sharp and reliable reconstructions even for the highly nonlinear inverse problem of EIT. The network is trained on data sets of simulated examples and then applied to experimental data without the need to perform an additional transfer training. Results for absolute EIT images are presented using experimental EIT data from the ACT4 and KIT4 EIT systems

    Tomographic Image Reconstruction of Fan-Beam Projections with Equidistant Detectors using Partially Connected Neural Networks

    Get PDF
    We present a neural network approach for tomographic imaging problem using interpolation methods and fan-beam projections. This approach uses a partially connected neural network especially assembled for solving tomographic\ud reconstruction with no need of training. We extended the calculations to perform reconstruction with interpolation and to allow tomography of fan-beam geometry. The main goal is to aggregate speed while maintaining or improving the quality of the tomographic reconstruction process

    Inversion using a new low-dimensional representation of complex binary geological media based on a deep neural network

    Full text link
    Efficient and high-fidelity prior sampling and inversion for complex geological media is still a largely unsolved challenge. Here, we use a deep neural network of the variational autoencoder type to construct a parametric low-dimensional base model parameterization of complex binary geological media. For inversion purposes, it has the attractive feature that random draws from an uncorrelated standard normal distribution yield model realizations with spatial characteristics that are in agreement with the training set. In comparison with the most commonly used parametric representations in probabilistic inversion, we find that our dimensionality reduction (DR) approach outperforms principle component analysis (PCA), optimization-PCA (OPCA) and discrete cosine transform (DCT) DR techniques for unconditional geostatistical simulation of a channelized prior model. For the considered examples, important compression ratios (200 - 500) are achieved. Given that the construction of our parameterization requires a training set of several tens of thousands of prior model realizations, our DR approach is more suited for probabilistic (or deterministic) inversion than for unconditional (or point-conditioned) geostatistical simulation. Probabilistic inversions of 2D steady-state and 3D transient hydraulic tomography data are used to demonstrate the DR-based inversion. For the 2D case study, the performance is superior compared to current state-of-the-art multiple-point statistics inversion by sequential geostatistical resampling (SGR). Inversion results for the 3D application are also encouraging

    Deep learning versus 1\ell^1-minimization for compressed sensing photoacoustic tomography

    Full text link
    We investigate compressed sensing (CS) techniques for reducing the number of measurements in photoacoustic tomography (PAT). High resolution imaging from CS data requires particular image reconstruction algorithms. The most established reconstruction techniques for that purpose use sparsity and 1\ell^1-minimization. Recently, deep learning appeared as a new paradigm for CS and other inverse problems. In this paper, we compare a recently invented joint 1\ell^1-minimization algorithm with two deep learning methods, namely a residual network and an approximate nullspace network. We present numerical results showing that all developed techniques perform well for deterministic sparse measurements as well as for random Bernoulli measurements. For the deterministic sampling, deep learning shows more accurate results, whereas for Bernoulli measurements the 1\ell^1-minimization algorithm performs best. Comparing the implemented deep learning approaches, we show that the nullspace network uniformly outperforms the residual network in terms of the mean squared error (MSE).Comment: This work has been presented at the Joint Photoacoustics Session with the 2018 IEEE International Ultrasonics Symposium Kobe, October 22-25, 201
    corecore