17,711 research outputs found

    Tomographic Image Reconstruction of Fan-Beam Projections with Equidistant Detectors using Partially Connected Neural Networks

    Get PDF
    We present a neural network approach for tomographic imaging problem using interpolation methods and fan-beam projections. This approach uses a partially connected neural network especially assembled for solving tomographic\ud reconstruction with no need of training. We extended the calculations to perform reconstruction with interpolation and to allow tomography of fan-beam geometry. The main goal is to aggregate speed while maintaining or improving the quality of the tomographic reconstruction process

    Weakly supervised 3D Reconstruction with Adversarial Constraint

    Full text link
    Supervised 3D reconstruction has witnessed a significant progress through the use of deep neural networks. However, this increase in performance requires large scale annotations of 2D/3D data. In this paper, we explore inexpensive 2D supervision as an alternative for expensive 3D CAD annotation. Specifically, we use foreground masks as weak supervision through a raytrace pooling layer that enables perspective projection and backpropagation. Additionally, since the 3D reconstruction from masks is an ill posed problem, we propose to constrain the 3D reconstruction to the manifold of unlabeled realistic 3D shapes that match mask observations. We demonstrate that learning a log-barrier solution to this constrained optimization problem resembles the GAN objective, enabling the use of existing tools for training GANs. We evaluate and analyze the manifold constrained reconstruction on various datasets for single and multi-view reconstruction of both synthetic and real images
    corecore