51,007 research outputs found

    A neural basis for percept stabilization binocular rivalry

    Get PDF
    When the same visual input has conflicting interpretations, conscious perception can alternate spontaneously between each competing percept. Surprisingly, such bistable perception can be stabilized by intermittent stimulus removal, suggesting the existence of perceptual "memory" across interruptions in stimulation. The neural basis of such a process remains Unknown. Here, we studied binocular rivalry, one type of bistable perception, in two linked experiments in human participants. First, we showed, in a behavioral experiment using binocular rivalry between face and grating stimuli, that the stabilizing effect of stimulus removal was specific to perceptual alternations evoked by rivalry, and did not occur following physical alternations in the absence of rivalry. We then used functional magnetic resonance imaging to measure brain activity in a variable delay period Of Stimulus removal. Activity in the fusiform face area during the delay period following removal of rivalrous Stimuli was greater following face than grating perception, whereas such a difference was absent during removal of non-rivalrous Stimuli. Moreover, activity in areas of fronto-parietal regions during the delay period correlated with the degree to which individual participants tended to experience percept stabilization. Our findings Suggest that percept-related activity in specialized extrastriate visual areas help to stabilize perception during perceptual conflict, and that high-level mechanisms may determine the influence of such signals on conscious perception

    The cerebellum could solve the motor error problem through error increase prediction

    Get PDF
    We present a cerebellar architecture with two main characteristics. The first one is that complex spikes respond to increases in sensory errors. The second one is that cerebellar modules associate particular contexts where errors have increased in the past with corrective commands that stop the increase in error. We analyze our architecture formally and computationally for the case of reaching in a 3D environment. In the case of motor control, we show that there are synergies of this architecture with the Equilibrium-Point hypothesis, leading to novel ways to solve the motor error problem. In particular, the presence of desired equilibrium lengths for muscles provides a way to know when the error is increasing, and which corrections to apply. In the context of Threshold Control Theory and Perceptual Control Theory we show how to extend our model so it implements anticipative corrections in cascade control systems that span from muscle contractions to cognitive operations.Comment: 34 pages (without bibliography), 13 figure

    Visual and Proprioceptive Contributions to Compensatory and Pursuit Tracking Movements in Humans

    Get PDF
    An ongoing debate in the field of motor control considers how the brain uses sensory information to guide the formation of motor commands to regulate movement accuracy. Recent research has shown that the brain may use visual and proprioceptive information differently for stabilization of limb posture (compensatory movements) and for controlling goal-directed limb trajectory (pursuit movements). Using a series of five experiments and linear systems identification techniques, we modeled and estimated the sensorimotor control parameters that characterize the human motor response to kinematic performance errors during continuous compensatory and pursuit tracking tasks. Our findings further support the idea that pursuit and compensatory movements of the limbs are differentially controlled

    Overlapping neural systems represent cognitive effort and reward anticipation

    Get PDF
    Anticipating a potential benefit and how difficult it will be to obtain it are valuable skills in a constantly changing environment. In the human brain, the anticipation of reward is encoded by the Anterior Cingulate Cortex (ACC) and Striatum. Naturally, potential rewards have an incentive quality, resulting in a motivational effect improving performance. Recently it has been proposed that an upcoming task requiring effort induces a similar anticipation mechanism as reward, relying on the same cortico-limbic network. However, this overlapping anticipatory activity for reward and effort has only been investigated in a perceptual task. Whether this generalizes to high-level cognitive tasks remains to be investigated. To this end, an fMRI experiment was designed to investigate anticipation of reward and effort in cognitive tasks. A mental arithmetic task was implemented, manipulating effort (difficulty), reward, and delay in reward delivery to control for temporal confounds. The goal was to test for the motivational effect induced by the expectation of bigger reward and higher effort. The results showed that the activation elicited by an upcoming difficult task overlapped with higher reward prospect in the ACC and in the striatum, thus highlighting a pivotal role of this circuit in sustaining motivated behavior

    Timing in trace conditioning of the nictitating membrane response of the rabbit (Oryctolagus cuniculus) : scalar, nonscalar, and adaptive features

    Get PDF
    Using interstimulus intervals (ISIs) of 125, 250, and 500 msec in trace conditioning of the rabbit nictitating membrane response, the offset times and durations of conditioned responses (CRs) were collected along with onset and peak latencies. All measures were proportional to the ISI, but only onset and peak latencies conformed to the criterion for scalar timing. Regarding the CR’s possible protective overlap of the unconditioned stimulus (US), CR duration increased with ISI, while the peak’s alignment with the US declined. Implications for models of timing and CR adaptiveness are discussed

    An information theoretic characterisation of auditory encoding.

    Get PDF
    The entropy metric derived from information theory provides a means to quantify the amount of information transmitted in acoustic streams like speech or music. By systematically varying the entropy of pitch sequences, we sought brain areas where neural activity and energetic demands increase as a function of entropy. Such a relationship is predicted to occur in an efficient encoding mechanism that uses less computational resource when less information is present in the signal: we specifically tested the hypothesis that such a relationship is present in the planum temporale (PT). In two convergent functional MRI studies, we demonstrated this relationship in PT for encoding, while furthermore showing that a distributed fronto-parietal network for retrieval of acoustic information is independent of entropy. The results establish PT as an efficient neural engine that demands less computational resource to encode redundant signals than those with high information content
    corecore