730 research outputs found

    Distances and Isomorphism between Networks and the Stability of Network Invariants

    Full text link
    We develop the theoretical foundations of a network distance that has recently been applied to various subfields of topological data analysis, namely persistent homology and hierarchical clustering. While this network distance has previously appeared in the context of finite networks, we extend the setting to that of compact networks. The main challenge in this new setting is the lack of an easy notion of sampling from compact networks; we solve this problem in the process of obtaining our results. The generality of our setting means that we automatically establish results for exotic objects such as directed metric spaces and Finsler manifolds. We identify readily computable network invariants and establish their quantitative stability under this network distance. We also discuss the computational complexity involved in precisely computing this distance, and develop easily-computable lower bounds by using the identified invariants. By constructing a wide range of explicit examples, we show that these lower bounds are effective in distinguishing between networks. Finally, we provide a simple algorithm that computes a lower bound on the distance between two networks in polynomial time and illustrate our metric and invariant constructions on a database of random networks and a database of simulated hippocampal networks

    PlanE: Representation Learning over Planar Graphs

    Full text link
    Graph neural networks are prominent models for representation learning over graphs, where the idea is to iteratively compute representations of nodes of an input graph through a series of transformations in such a way that the learned graph function is isomorphism invariant on graphs, which makes the learned representations graph invariants. On the other hand, it is well-known that graph invariants learned by these class of models are incomplete: there are pairs of non-isomorphic graphs which cannot be distinguished by standard graph neural networks. This is unsurprising given the computational difficulty of graph isomorphism testing on general graphs, but the situation begs to differ for special graph classes, for which efficient graph isomorphism testing algorithms are known, such as planar graphs. The goal of this work is to design architectures for efficiently learning complete invariants of planar graphs. Inspired by the classical planar graph isomorphism algorithm of Hopcroft and Tarjan, we propose PlanE as a framework for planar representation learning. PlanE includes architectures which can learn complete invariants over planar graphs while remaining practically scalable. We empirically validate the strong performance of the resulting model architectures on well-known planar graph benchmarks, achieving multiple state-of-the-art results.Comment: Proceedings of the Thirty-Seventh Annual Conference on Advances in Neural Information Processing Systems (NeurIPS 2023). Code and data available at: https://github.com/ZZYSonny/Plan

    Coupling of quantum angular momenta: an insight into analogic/discrete and local/global models of computation

    Full text link
    In the past few years there has been a tumultuous activity aimed at introducing novel conceptual schemes for quantum computing. The approach proposed in (Marzuoli A and Rasetti M 2002, 2005a) relies on the (re)coupling theory of SU(2) angular momenta and can be viewed as a generalization to arbitrary values of the spin variables of the usual quantum-circuit model based on `qubits' and Boolean gates. Computational states belong to finite-dimensional Hilbert spaces labelled by both discrete and continuous parameters, and unitary gates may depend on quantum numbers ranging over finite sets of values as well as continuous (angular) variables. Such a framework is an ideal playground to discuss discrete (digital) and analogic computational processes, together with their relationships occuring when a consistent semiclassical limit takes place on discrete quantum gates. When working with purely discrete unitary gates, the simulator is naturally modelled as families of quantum finite states--machines which in turn represent discrete versions of topological quantum computation models. We argue that our model embodies a sort of unifying paradigm for computing inspired by Nature and, even more ambitiously, a universal setting in which suitably encoded quantum symbolic manipulations of combinatorial, topological and algebraic problems might find their `natural' computational reference model.Comment: 17 pages, 1 figure; Workshop `Natural processes and models of computation' Bologna (Italy) June 16-18 2005; to appear in Natural Computin

    Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting

    Full text link
    While Graph Neural Networks (GNNs) have achieved remarkable results in a variety of applications, recent studies exposed important shortcomings in their ability to capture the structure of the underlying graph. It has been shown that the expressive power of standard GNNs is bounded by the Weisfeiler-Leman (WL) graph isomorphism test, from which they inherit proven limitations such as the inability to detect and count graph substructures. On the other hand, there is significant empirical evidence, e.g. in network science and bioinformatics, that substructures are often intimately related to downstream tasks. To this end, we propose "Graph Substructure Networks" (GSN), a topologically-aware message passing scheme based on substructure encoding. We theoretically analyse the expressive power of our architecture, showing that it is strictly more expressive than the WL test, and provide sufficient conditions for universality. Importantly, we do not attempt to adhere to the WL hierarchy; this allows us to retain multiple attractive properties of standard GNNs such as locality and linear network complexity, while being able to disambiguate even hard instances of graph isomorphism. We perform an extensive experimental evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings including molecular graphs and social networks. The code is publicly available at https://github.com/gbouritsas/graph-substructure-networks

    Spectral Reconstruction and Isomorphism of graphs using variable neighbourhood search

    Get PDF
    The Euclidean distance between the eigenvalue sequences of graphs G and H, on the same number of vertices, is called the spectral distance between G and H. This notion is the basis of a heuristic algorithm for reconstructing a graph with prescribed spectrum. By using a graph Γ constructed from cospectral graphs G and H, we can ensure that G and H are isomorphic if and only if the spectral distance between Γ  and G+K2 is zero. This construction is exploited to design a heuristic algorithm for testing graph isomorphism. We present preliminary experimental results obtained by implementing these algorithms in conjunction with a meta-heuristic known as a variable neighbourhood search

    Machine learning and invariant theory

    Full text link
    Inspired by constraints from physical law, equivariant machine learning restricts the learning to a hypothesis class where all the functions are equivariant with respect to some group action. Irreducible representations or invariant theory are typically used to parameterize the space of such functions. In this article, we introduce the topic and explain a couple of methods to explicitly parameterize equivariant functions that are being used in machine learning applications. In particular, we explicate a general procedure, attributed to Malgrange, to express all polynomial maps between linear spaces that are equivariant under the action of a group GG, given a characterization of the invariant polynomials on a bigger space. The method also parametrizes smooth equivariant maps in the case that GG is a compact Lie group
    • …
    corecore