1,770 research outputs found

    Generative Adversarial Text to Image Synthesis

    Full text link
    Automatic synthesis of realistic images from text would be interesting and useful, but current AI systems are still far from this goal. However, in recent years generic and powerful recurrent neural network architectures have been developed to learn discriminative text feature representations. Meanwhile, deep convolutional generative adversarial networks (GANs) have begun to generate highly compelling images of specific categories, such as faces, album covers, and room interiors. In this work, we develop a novel deep architecture and GAN formulation to effectively bridge these advances in text and image model- ing, translating visual concepts from characters to pixels. We demonstrate the capability of our model to generate plausible images of birds and flowers from detailed text descriptions.Comment: ICML 201

    Compressing Word Embeddings

    Full text link
    Recent methods for learning vector space representations of words have succeeded in capturing fine-grained semantic and syntactic regularities using vector arithmetic. However, these vector space representations (created through large-scale text analysis) are typically stored verbatim, since their internal structure is opaque. Using word-analogy tests to monitor the level of detail stored in compressed re-representations of the same vector space, the trade-offs between the reduction in memory usage and expressiveness are investigated. A simple scheme is outlined that can reduce the memory footprint of a state-of-the-art embedding by a factor of 10, with only minimal impact on performance. Then, using the same `bit budget', a binary (approximate) factorisation of the same space is also explored, with the aim of creating an equivalent representation with better interpretability.Comment: 10 pages, 0 figures, submitted to ICONIP-2016. Previous experimental results were submitted to ICLR-2016, but the paper has been significantly updated, since a new experimental set-up worked much bette

    MetaNODE: Prototype Optimization as a Neural ODE for Few-Shot Learning

    Full text link
    Few-Shot Learning (FSL) is a challenging task, \emph{i.e.}, how to recognize novel classes with few examples? Pre-training based methods effectively tackle the problem by pre-training a feature extractor and then predicting novel classes via a cosine nearest neighbor classifier with mean-based prototypes. Nevertheless, due to the data scarcity, the mean-based prototypes are usually biased. In this paper, we attempt to diminish the prototype bias by regarding it as a prototype optimization problem. To this end, we propose a novel meta-learning based prototype optimization framework to rectify prototypes, \emph{i.e.}, introducing a meta-optimizer to optimize prototypes. Although the existing meta-optimizers can also be adapted to our framework, they all overlook a crucial gradient bias issue, \emph{i.e.}, the mean-based gradient estimation is also biased on sparse data. To address the issue, we regard the gradient and its flow as meta-knowledge and then propose a novel Neural Ordinary Differential Equation (ODE)-based meta-optimizer to polish prototypes, called MetaNODE. In this meta-optimizer, we first view the mean-based prototypes as initial prototypes, and then model the process of prototype optimization as continuous-time dynamics specified by a Neural ODE. A gradient flow inference network is carefully designed to learn to estimate the continuous gradient flow for prototype dynamics. Finally, the optimal prototypes can be obtained by solving the Neural ODE. Extensive experiments on miniImagenet, tieredImagenet, and CUB-200-2011 show the effectiveness of our method.Comment: Accepted by AAAI 202
    • …
    corecore