13,973 research outputs found

    3D particle tracking velocimetry using dynamic discrete tomography

    Get PDF
    Particle tracking velocimetry in 3D is becoming an increasingly important imaging tool in the study of fluid dynamics, combustion as well as plasmas. We introduce a dynamic discrete tomography algorithm for reconstructing particle trajectories from projections. The algorithm is efficient for data from two projection directions and exact in the sense that it finds a solution consistent with the experimental data. Non-uniqueness of solutions can be detected and solutions can be tracked individually

    A Novel Convex Relaxation for Non-Binary Discrete Tomography

    Full text link
    We present a novel convex relaxation and a corresponding inference algorithm for the non-binary discrete tomography problem, that is, reconstructing discrete-valued images from few linear measurements. In contrast to state of the art approaches that split the problem into a continuous reconstruction problem for the linear measurement constraints and a discrete labeling problem to enforce discrete-valued reconstructions, we propose a joint formulation that addresses both problems simultaneously, resulting in a tighter convex relaxation. For this purpose a constrained graphical model is set up and evaluated using a novel relaxation optimized by dual decomposition. We evaluate our approach experimentally and show superior solutions both mathematically (tighter relaxation) and experimentally in comparison to previously proposed relaxations

    Three-dimensional reconstruction of stenosed coronary artery segments with assessment of the flow impedance

    Get PDF
    In this paper preliminary results of a study about the diagnostic benefits of 3D visualization and quantitation of stenosed coronary artery segments are presented. As is well known, even biplane angiographic images do not provide enough information for binary reconstruction. Therefore,a priori information about the slice to be reconstructed must be incorporated into the reconstruction algorithm. One approach is to assume a circular cross-section of the coronary artery. Hence, the diameter is estimated from the contours of the vessels in both projections. Another approach is to search for a solution of the reconstruction problem close to the previously reconstructed adjacent slice. In this paper we follow the first method based on contour information. The reconstructed coronary segment is visualized in three dimensions. Based on the obtained geometry of the obstruction the pertinent blood flow impedance is estimated on the basis of fluid dynamic principles. The results of applying the reconstruction algorithms to clinical coronary biplane exposures are presented with an indication of the assessed flow impedance

    Tomographic Study of Internal Erosion of Particle Flows in Porous Media

    Full text link
    In particle-laden flows through porous media, porosity and permeability are significantly affected by the deposition and erosion of particles. Experiments show that the permeability evolution of a porous medium with respect to a particle suspension is not smooth, but rather exhibits significant jumps followed by longer periods of continuous permeability decrease. Their origin seems to be related to internal flow path reorganization by avalanches of deposited material due to erosion inside the porous medium. We apply neutron tomography to resolve the spatio-temporal evolution of the pore space during clogging and unclogging to prove the hypothesis of flow path reorganization behind the permeability jumps. This mechanistic understanding of clogging phenomena is relevant for a number of applications from oil production to filters or suffosion as the mechanisms behind sinkhole formation.Comment: 18 pages, 9 figure

    Reconstructing binary images from discrete X-rays

    Get PDF
    We present a new algorithm for reconstructing binary images from their projections along a small number of directions. Our algorithm performs a sequence of related reconstructions, each using only two projections. The algorithm makes extensive use of network flow algorithms for solving the two-projection subproblems. Our experimental results demonstrate that the algorithm can compute reconstructions which resemble the original images very closely from a small number of projections, even in the presence of noise. Although the effectiveness of the algorithm is based on certain smoothness assumptions about the image, even tiny, non-smooth details are reconstructed exactly. The class of images for which the algorithm is most effective includes images of convex objects, but images of objects that contain holes or consist of multiple components can also be reconstructed with great accurac

    Network Flow Algorithms for Discrete Tomography

    Get PDF
    Tomography is a powerful technique to obtain images of the interior of an object in a nondestructive way. First, a series of projection images (e.g., X-ray images) is acquired and subsequently a reconstruction of the interior is computed from the available project data. The algorithms that are used to compute such reconstructions are known as tomographic reconstruction algorithms. Discrete tomography is concerned with the tomographic reconstruction of images that are known to contain only a few different gray levels. By using this knowledge in the reconstruction algorithm it is often possible to reduce the number of projections required to compute an accurate reconstruction, compared to algorithms that do not use prior knowledge. This thesis deals with new reconstruction algorithms for discrete tomography. In particular, the first five chapters are about reconstruction algorithms based on network flow methods. These algorithms make use of an elegant correspondence between certain types of tomography problems and network flow problems from the field of Operations Research. Chapter 6 deals with a problem that occurs in the application of discrete tomography to the reconstruction of nanocrystals from projections obtained by electron microscopy.The research for this thesis has been financially supported by the Netherlands Organisation for Scientific Research (NWO), project 613.000.112.UBL - phd migration 201

    Generic iterative subset algorithms for discrete tomography

    Get PDF
    AbstractDiscrete tomography deals with the reconstruction of images from their projections where the images are assumed to contain only a small number of grey values. In particular, there is a strong focus on the reconstruction of binary images (binary tomography). A variety of binary tomography problems have been considered in the literature, each using different projection models or additional constraints. In this paper, we propose a generic iterative reconstruction algorithm that can be used for many different binary reconstruction problems. In every iteration, a subproblem is solved based on at most two of the available projections. Each of the subproblems can be solved efficiently using network flow methods. We report experimental results for various reconstruction problems. Our results demonstrate that the algorithm is capable of reconstructing complex objects from a small number of projections
    • …
    corecore