70 research outputs found

    Multipath Routing in Wireless Sensor Networks: Survey and Research Challenges

    Get PDF
    A wireless sensor network is a large collection of sensor nodes with limited power supply and constrained computational capability. Due to the restricted communication range and high density of sensor nodes, packet forwarding in sensor networks is usually performed through multi-hop data transmission. Therefore, routing in wireless sensor networks has been considered an important field of research over the past decade. Nowadays, multipath routing approach is widely used in wireless sensor networks to improve network performance through efficient utilization of available network resources. Accordingly, the main aim of this survey is to present the concept of the multipath routing approach and its fundamental challenges, as well as the basic motivations for utilizing this technique in wireless sensor networks. In addition, we present a comprehensive taxonomy on the existing multipath routing protocols, which are especially designed for wireless sensor networks. We highlight the primary motivation behind the development of each protocol category and explain the operation of different protocols in detail, with emphasis on their advantages and disadvantages. Furthermore, this paper compares and summarizes the state-of-the-art multipath routing techniques from the network application point of view. Finally, we identify open issues for further research in the development of multipath routing protocols for wireless sensor networks

    The Gain of Network Coding in Wireless Sensor Networking

    Get PDF
    Wireless Sensor Networks have some well known features such as low battery consumption, changing topology awareness, open environment, non reliable radio links, etc.In this paper, we investigate the benefits of Network Coding Wireless Sensor networking, especially resiliency.One of our main concern is the resiliency in Wireless Sensor Networks.We have seen that resiliency could be described as a multi dimensional metric \cite{5478822,erdene2011enhancing,6423640} taking parameters such as Average Delivery Ratio, Delay Efficiency, Energy Efficiency, Average Throughput and Delivery Fairness into account.Resiliency can then be graphically represented as a kiviat diagram created by the previous weighted parameters.In order to introduce these metrics, previous works have been leaded on the Random Gradient Based Routing, which proved good resiliency in malicious environment.We look for seeing the improvements in term of resiliency, when adding network coding in the Random Gradient Based Routing with malicious nodes

    A Hybrid Algorithm for Reliable and Energy-efficient Data Gathering in Wireless Sensor Networks

    Get PDF
    Reliability and energy efficiency are two important requirements of the data gathering process in wireless sensor networks. Accordingly, we propose a novel data gathering algorithm which meets these requirements. The proposed scheme categorizes the sensed data into valuable and normal data and handles each type of data based on its demands. The main requirement of valuable data is reliability. Thus, the adopted strategy to gather this type of data is to send several copies of data packets toward the sink. The rise of energy exhaustion in this scheme is tolerable. This is due to that, the valuable data is generated at a low rate. On the other hand, our main concern in gathering normal data is energy efficiency. As most of the sensed data is normal, an energy-efficient approach to gather normal data results in considerable energy conserving. Thus, we exploit clustering technique for normal data gathering. We also propose a lightweight intrusion detection system to detect malicious nodes. Simulation results and theoretical analysis confirm that our proposed algorithm provides reliability and energy efficiency at an acceptable level

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Robust Path Construction for Reliable Data Transmissions in Node Disjoint Multipath Routing

    Get PDF
    Wireless Sensor Networks (WSNs) are prone to node breakdowns due to energy constraints, which contribute to frequent topology changes. Moreover, since sensor nodes have restricted transmission range, multiple hops are needed by the node in order to forward the packets from one node to the other and this raises very challenging issues when designing routing protocols. Most of the proposed single path routing schemes use a periodic low-rate flooding of data in order to recover from path failures, which causes higher consumption in sensor node resources. So multipath routing is an optimal approach to enhance the network lifetime. In this paper, a robust path construction for a reliable data transmission in node-disjoint multipath routing (RNDMR) is proposed for WSNs. The proposed RNDMR has the ability to provide a low overhead path construction as well as provide data transmission reliability by using XOR-based coding algorithm, which entails low utilization of resources, such as low storage space and lesser computing power. In the proposed RNDMR, the procedure involves the splitting up of all transmitted messages into many different segments of equal size, before adding the XOR-based error correction codes and distributing it among multiple paths simultaneously in order to boost reliable data transmission and to be assured that the essential fragment of the packet arrives at the sink node without any additional consumption of energy and undue delay. By using simulations, the performance of RNDMR was assessed and compares it with ReInForm routing. The results illustrate that RNDMR attains low energy consumption, records low average delay and routing overhead, as well as increased packet delivery ratio when compared with ReInForm Routing

    QoS-Based and Secure Multipath Routing in Wireless Sensor Networks

    Get PDF
    With the growing demand for quality of service (QoS) aware routing protocols in wireless networks, QoS-based routing has emerged as an interesting research topic. A QoS guarantee in wireless sensor networks (WSNs) is difficult and more challenging due to the fact that the available resources of sensors and the various applications running over these networks have different constraints in their nature and requirements. Furthermore, due to the increased use of sensor nodes in a variety of application fields, WSNs need to handle heterogeneous traffic with diverse priorities to achieve the required QoS. In this thesis, we investigate the problem of providing multi-QoS in routing protocols for WSNs. In particular, we investigate several aspects related to the application requirements and the network states and resources. We present multi-objective QoS aware routing protocol for WSNs that uses the geographic routing mechanism combined with the QoS requirements to meet diverse application requirements by considering the changing conditions of the network. The protocol formulates the application requirements with the links available resources and conditions to design heuristic neighbor discovery algorithms. Also, with the unlimited resource at the sink node, the process of selecting the routing path/paths is assigned to the sink. Paths selection algorithms are designed with various goals in order to extend network lifetime, enhance the reliability of data transmission, decrease end-to-end delay, achieve load balancing and provide fault tolerance. We also develop a cross-layer routing protocol that combines routing at network layer and the time scheduling at the MAC layer with respect to delay and reliability in an energy efficient way. A node-disjoint multipath routing is used and a QoS-aware priority scheduling considering MAC layer is proposed to ensure that real time and non-real time traffic achieve their desired QoS while alleviating congestion in the network. Additionally, we propose new mechanism for secure and reliable data transmission in multipath routing for WSNs. Different levels of security requirements are defined and depending on these requirements, a selective encryption scheme is introduced to encrypt selected number of coded fragments in order to enhance security and thereby reduce the time required for encryption. Node-disjoint multipath routing combined with source coding is used in order to enhance both security and reliability of data transmission. Also, we develop an allocation strategy that allocates fragments on paths to enhance both the security and probability of successful data delivery. Analysis and extensive simulation are conducted to study the performance of all the above proposed protocols

    Performance Evaluation of Routing Protocols in Wireless Sensor Networks

    Get PDF
    The growing field of information technology enhanced the capabilities of the wireless communication. The large usage of WSN in the various fields of the real world is scaling with the wide variety of roles for wireless sensor network performance is challenging tasks. The issues of performance in the wireless sensor networks in many literatures, yet more studies are being done on the performance because the user and application needs are keep increasing,to encounter the challenges of the performance issues are studied here by digging out the routing protocols performance in WSN. To conduct the study and analysis on performance of WSN protocols the there are various performance metrics used for the evaluation of performance in WSN. This study will be carried out to come up with the simulation experiments over the directed diffusion (DD) and LEACH routing protocols in terms of energy consumption, congestion and reliability in the wireless sensor networks (WSN) environment with the low power consumptions. The simulation experiments in this study are based on the reliability, delay and other constraints to compare the speed, reliability and electricity saving data communication in the wireless sensor networks (WSN). The discussion of the conducted simulation experiments describes the steps which are pertaining to the protocols and tradeoffs and complexity of the data traffic for the efficiency. The NS2 simulation is used for the simulation based experiments for performance of wireless sensor network (WSN) communications which is demonstrating the comparative effectiveness of the routing protocols in the recent concepts. The results of the simulation are lightening the ways for the minimization of the delay and enhancement in the reliability issues in wireless sensor networks (WSN)
    corecore