2,619 research outputs found

    Whisking with robots from rat vibrissae to biomimetic technology for active touch

    Get PDF
    This article summarizes some of the key features of the rat vibrissal system, including the actively controlled sweeping movements of the vibrissae known as whisking, and reviews the past and ongoing research aimed at replicating some of this functionality in biomimetic robots

    Determining robot actions for tasks requiring sensor interaction

    Get PDF
    The performance of non-trivial tasks by a mobile robot has been a long term objective of robotic research. One of the major stumbling blocks to this goal is the conversion of the high-level planning goals and commands into the actuator and sensor processing controls. In order for a mobile robot to accomplish a non-trivial task, the task must be described in terms of primitive actions of the robot's actuators. Most non-trivial tasks require the robot to interact with its environment; thus necessitating coordination of sensor processing and actuator control to accomplish the task. The main contention is that the transformation from the high level description of the task to the primitive actions should be performed primarily at execution time, when knowledge about the environment can be obtained through sensors. It is proposed to produce the detailed plan of primitive actions by using a collection of low-level planning components that contain domain specific knowledge and knowledge about the available sensors, actuators, and sensor/actuator processing. This collection will perform signal and control processing as well as serve as a control interface between an actual mobile robot and a high-level planning system. Previous research has shown the usefulness of high-level planning systems to plan the coordination of activities such to achieve a goal, but none have been fully applied to actual mobile robots due to the complexity of interacting with sensors and actuators. This control interface is currently being implemented on a LABMATE mobile robot connected to a SUN workstation and will be developed such to enable the LABMATE to perform non-trivial, sensor-intensive tasks as specified by a planning system

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Hybrid approaches for mobile robot navigation

    Get PDF
    The work described in this thesis contributes to the efficient solution of mobile robot navigation problems. A series of new evolutionary approaches is presented. Two novel evolutionary planners have been developed that reduce the computational overhead in generating plans of mobile robot movements. In comparison with the best-performing evolutionary scheme reported in the literature, the first of the planners significantly reduces the plan calculation time in static environments. The second planner was able to generate avoidance strategies in response to unexpected events arising from the presence of moving obstacles. To overcome limitations in responsiveness and the unrealistic assumptions regarding a priori knowledge that are inherent in planner-based and a vigation systems, subsequent work concentrated on hybrid approaches. These included a reactive component to identify rapidly and autonomously environmental features that were represented by a small number of critical waypoints. Not only is memory usage dramatically reduced by such a simplified representation, but also the calculation time to determine new plans is significantly reduced. Further significant enhancements of this work were firstly, dynamic avoidance to limit the likelihood of potential collisions with moving obstacles and secondly, exploration to identify statistically the dynamic characteristics of the environment. Finally, by retaining more extensive environmental knowledge gained during previous navigation activities, the capability of the hybrid navigation system was enhanced to allow planning to be performed for any start point and goal point

    Sharing and Trading in a Human-Robot System

    Get PDF
    • …
    corecore