1,810 research outputs found

    Contributions from computational intelligence to healthcare data processing

    Get PDF
    80 p.The increasing ability to gather, store and process health care information, through the electronic health records and improved communication methods opens the door for new applications intended to improve health care in many different ways. Crucial to this evolution is the development of new computational intelligence tools, related to machine learning and statistics. In this thesis we have dealt with two case studies involving health data. The first is the monitoring of children with respiratory diseases in the pediatric intensive care unit of a hospital. The alarm detection is stated as a classification problem predicting the triage selected by the nurse or medical doctor. The second is the prediction of readmissions leading to hospitalization in an emergency department of a hospital. Both problems have great impact in economic and personal well being. We have tackled them with a rigorous methodological approach, obtaining results that may lead to a real life implementation. We have taken special care in the treatment of the data imbalance. Finally we make propositions to bring these techniques to the clinical environment

    Variable selection in high-dimensional data: application in a SARS-CoV-2 pneumonia clinical data-set

    Get PDF
    As a result of the COVID-19 pandemic that collapsed hospitals in some countries, numerous studies have been carried out to understand the development of the disease and how it affects patients with different characteristics, in order to make optimal use of the available resources. This project is part of a multicentre study that aims to predict the severity of patients with SARS-CoV-2 pneumonia, for which different variables related to health, demographic and socio-economic factors and exposure to pollutants of patients have been collected. Given the number of variables contained in the data-set, it is necessary to reduce the number of variables in order to create a practical model for interpretation, as well as to reduce the amount of information that doctors have to collect on each patient. In this project, an exhaustive analysis of variable or feature selection techniques has been carried out in order to determine their performance and relevance in terms of stability, similarity and computation time. Based on the techniques that have shown the best characteristics, the most meaningful factors in preventing the severity of pneumonia have been identified, in accordance with what has been proposed by other studies

    Cloud Computing with Artificial Intelligence Techniques for Effective Disease Detection

    Get PDF
    With the current rapid advancement of cloud computing (CC) technology, which enabled the connectivity of many intelligent objects and detectors and created smooth data interchange between systems, there is now a strict need for platforms for data processing, the Internet of Things (IoT), and data management. The field of medicine in CC is receiving a lot of attention from the scientific world, as well as the private and governmental sectors. Thousands of individuals now have a digital system due to these apps where they may regularly obtain helpful medical advice for leading a healthy life. The use of artificial intelligence (AI) in the medical field has several advantages, including the ability to automate processes and analyze large patient databases to offer superior medicine more quickly and effectively. IoT-enabled smart health tools provide both internet solutions and a variety of features. CC infrastructure improves these healthcare solutions by enabling safe storage and accessibility. We suggest a novel Cloud computing and artificial intelligence (CC-AI) premised smart medical solution for surveillance and detecting major illnesses to provide superior solutions to the users. For disease detection, we suggested AI-based whale optimization (WO) and fuzzy neural network (FNN) (WO-FNN). Patients' IoT wearable sensor data is gathered for detection. The accuracy, sensitivity, specificity, and computation time are evaluated and compared with existing techniques

    Machine Learning Methods for Neonatal Mortality and Morbidity Classification

    Get PDF
    Preterm birth is the leading cause of mortality in children under the age of five. In particular, low birth weight and low gestational age are associated with an increased risk of mortality. Preterm birth also increases the risks of several complications, which can increase the risk of death, or cause long-term morbidities with both individual and societal impacts. In this work, we use machine learning for prediction of neonatal mortality as well as neonatal morbidities of bronchopulmonary dysplasia, necrotizing enterocolitis, and retinopathy of prematurity, among very low birth weight infants. Our predictors include time series data and clinical variables collected at the neonatal intensive care unit of Children's Hospital, Helsinki University Hospital. We examine 9 different classifiers and present our main results in AUROC, similar to our previous studies, and in F1-score, which we propose for classifier selection in this study. We also investigate how the predictive performance of the classifiers evolves as the length of time series is increased, and examine the relative importance of different features using the random forest classifier, which we found to generally perform the best in all tasks. Our systematic study also involves different data preprocessing methods which can be used to improve classifier sensitivities. Our best classifier AUROC is 0.922 in the prediction of mortality, 0.899 in the prediction of bronchopulmonary dysplasia, 0.806 in the prediction of necrotizing enterocolitis, and 0.846 in the prediction of retinopathy of prematurity. Our best classifier F1-score is 0.493 in the prediction of mortality, 0.704 in the prediction of bronchopulmonary dysplasia, 0.215 in the prediction of necrotizing enterocolitis, and 0.368 in the prediction of retinopathy of prematurity.Peer reviewe

    Unsupervised Similarity-Based Risk Stratification for Cardiovascular Events Using Long-Term Time-Series Data

    Get PDF
    In medicine, one often bases decisions upon a comparative analysis of patient data. In this paper, we build upon this observation and describe similarity-based algorithms to risk stratify patients for major adverse cardiac events. We evolve the traditional approach of comparing patient data in two ways. First, we propose similarity-based algorithms that compare patients in terms of their long-term physiological monitoring data. Symbolic mismatch identifies functional units in long-term signals and measures changes in the morphology and frequency of these units across patients. Second, we describe similarity-based algorithms that are unsupervised and do not require comparisons to patients with known outcomes for risk stratification. This is achieved by using an anomaly detection framework to identify patients who are unlike other patients in a population and may potentially be at an elevated risk. We demonstrate the potential utility of our approach by showing how symbolic mismatch-based algorithms can be used to classify patients as being at high or low risk of major adverse cardiac events by comparing their long-term electrocardiograms to that of a large population. We describe how symbolic mismatch can be used in three different existing methods: one-class support vector machines, nearest neighbor analysis, and hierarchical clustering. When evaluated on a population of 686 patients with available long-term electrocardiographic data, symbolic mismatch-based comparative approaches were able to identify patients at roughly a two-fold increased risk of major adverse cardiac events in the 90 days following acute coronary syndrome. These results were consistent even after adjusting for other clinical risk variables.National Science Foundation (U.S.) (CAREER award 1054419

    Development of a Composite Health Index in Children with Cystic Fibrosis: A Pipeline for Data Processing, Machine Learning, and Model Implementation using Electronic Health Records

    Get PDF
    Cystic Fibrosis (CF) is a heterogeneous multi-faceted genetic condition that primarily affects the lungs and digestive system. For children and young people living with CF, timely management is necessary to prevent the establishment of severe disease. Modern data capture through electronic health records (EHR) have created an opportunity to use machine learning algorithms to classify subgroups of disease to understand health status and prognosis. The overall aim of this thesis was to develop a composite health index in children with CF. An iterative approach to unsupervised cluster analysis was developed to identify homogeneous clusters of children with CF in a pre-existing encounter-based CF database from Toronto Canada. An external validation of the model was carried out in a historical CF dataset from Great Ormond Street Hospital (GOSH) in London UK. The clusters were also re-created and validated using EHR data from GOSH when it first became accessible in 2021. The interpretability and sensitivity of the GOSH EHR model was explored. Lastly, a scoping review was carried out to investigate common barriers to implementation of prognostic machine learning algorithms in paediatric respiratory care. A cluster model was identified that detailed four clusters associated with time to future hospitalisation, pulmonary exacerbation, and lung function. The clusters were also associated with different disease related variables such as comorbidities, anthropometrics, microbiology infections, and treatment history. An app was developed to display individualised cluster assignment, which will be a useful way to interpret the cluster model clinically. The review of prognostic machine learning algorithms identified a lack of reproducibility and validations as the major limitation to model reporting that impair clinical translation. EHR systems facilitate point-of-care access of individualised data and integrated machine learning models. However, there is a gap in translation to clinical implementation of machine learning models. With appropriate regulatory frameworks the health index developed for children with CF could be implemented in CF care

    Fractal analysis of right ventricular trabeculae in pulmonary hypertension

    Get PDF
    Purpose: To measure right ventricular (RV) trabecular complexity by its fractal dimension (FD) in healthy subjects and patients with pulmonary hypertension (PH) and assess its relationship to hemodynamic and functional parameters, and future cardiovascular events. Materials and methods: This retrospective study used data acquired from May 2004 to October 2013 for 256 patients with newly-diagnosed PH that underwent cardiac magnetic resonance (CMR) imaging, right heart catheterization and six-minute walk distance testing with a median follow-up of 4.0 years. 256 healthy controls underwent CMR only. Biventricular FD, volumes and function were assessed on short-axis cine images. Reproducibility was assessed by intraclass correlation coefficient, correlation between variables was assessed by Pearson’s correlation test, and mortality prediction compared by univariable and multivariable Cox regression analysis. Results: RV-FD reproducibility had an intraclass correlation coefficient of 0.97 (95% confidence interval [CI]: 0.96, 0.98). RV-FD was higher in PH patients than healthy subjects (median 1.310, inter-quartile range [IQR] 1.281-1.341 vs 1.264, 1.242-1.295, P <.001) with the greatest difference near the apex. RV-FD was associated with pulmonary vascular resistance (r=0.30, P <.001). In univariable Cox regression analysis, RV-FD was a significant predictor of death (hazards ratio [HR]: 1.256, CI: 1.011, 1.560, P =.04), but in a multivariable analysis did not predict survival independently of conventional parameters of RV remodeling (HR: 1.179, CI: 0.871, 1.596, P =0.29). Conclusion: Fractal analysis of RV trabecular complexity is a highly reproducible measure of remodeling in PH associated with afterload, although the gain in survival prediction over traditional markers is not significant
    • …
    corecore