572 research outputs found

    Energy-efficient wireless communication

    Get PDF
    In this chapter we present an energy-efficient highly adaptive network interface architecture and a novel data link layer protocol for wireless networks that provides Quality of Service (QoS) support for diverse traffic types. Due to the dynamic nature of wireless networks, adaptations in bandwidth scheduling and error control are necessary to achieve energy efficiency and an acceptable quality of service. In our approach we apply adaptability through all layers of the protocol stack, and provide feedback to the applications. In this way the applications can adapt the data streams, and the network protocols can adapt the communication parameters

    Time diversity solutions to cope with lost packets

    Get PDF
    A dissertation submitted to Departamento de Engenharia ElectrotĂ©cnica of Faculdade de CiĂȘncias e Tecnologia of Universidade Nova de Lisboa in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engenharia ElectrotĂ©cnica e de ComputadoresModern broadband wireless systems require high throughputs and can also have very high Quality-of-Service (QoS) requirements, namely small error rates and short delays. A high spectral efficiency is needed to meet these requirements. Lost packets, either due to errors or collisions, are usually discarded and need to be retransmitted, leading to performance degradation. An alternative to simple retransmission that can improve both power and spectral efficiency is to combine the signals associated to different transmission attempts. This thesis analyses two time diversity approaches to cope with lost packets that are relatively similar at physical layer but handle different packet loss causes. The first is a lowcomplexity Diversity-Combining (DC) Automatic Repeat reQuest (ARQ) scheme employed in a Time Division Multiple Access (TDMA) architecture, adapted for channels dedicated to a single user. The second is a Network-assisted Diversity Multiple Access (NDMA) scheme, which is a multi-packet detection approach able to separate multiple mobile terminals transmitting simultaneously in one slot using temporal diversity. This thesis combines these techniques with Single Carrier with Frequency Division Equalizer (SC-FDE) systems, which are widely recognized as the best candidates for the uplink of future broadband wireless systems. It proposes a new NDMA scheme capable of handling more Mobile Terminals (MTs) than the user separation capacity of the receiver. This thesis also proposes a set of analytical tools that can be used to analyse and optimize the use of these two systems. These tools are then employed to compare both approaches in terms of error rate, throughput and delay performances, and taking the implementation complexity into consideration. Finally, it is shown that both approaches represent viable solutions for future broadband wireless communications complementing each other.Fundação para a CiĂȘncia e Tecnologia - PhD grant(SFRH/BD/41515/2007); CTS multi-annual funding project PEst-OE/EEI/UI0066/2011, IT pluri-annual funding project PEst-OE/EEI/LA0008/2011, U-BOAT project PTDC/EEATEL/ 67066/2006, MPSat project PTDC/EEA-TEL/099074/2008 and OPPORTUNISTICCR project PTDC/EEA-TEL/115981/200

    DOWNSTREAM RESOURCE ALLOCATION IN DOCSIS 3.0 CHANNEL BONDED NETWORKS

    Get PDF
    Modern broadband internet access cable systems follow the Data Over Cable System Interface Specification (DOCSIS) for data transfer between the individual cable modem (CM) and the Internet. The newest version of DOCSIS, version 3.0, provides an abstraction referred to as bonding groups to help manage bandwidth and to increase bandwidth to each user beyond that available within a single 6MHz. television channel. Channel bonding allows more than one channel to be used by a CM to provide a virtual channel of much greater bandwidth. This combining of channels into bonding groups, especially when channels overlap between more than one bonding group, complicates the resource allocation problem within these networks. The goal of resource allocation in this research is twofold, to provide for fairness among users while at the same time making maximum possible utilization of the available system bandwidth. The problem of resource allocation in computer networks has been widely studied by the academic community. Past work has studied resource allocation in many network types, however application in a DOCSIS channel bonded network has not been explored. This research begins by first developing a definition of fairness in a channel bonded system. After providing a theoretical definition of fairness we implement simulations of different scheduling disciplines and evaluate their performance against this theoretical ideal. The complexity caused by overlapped channels requires even the simplest scheduling algorithms to be modified to work correctly. We then develop an algorithm to maximize the use of the available system bandwidth. The approach involves using competitive analysis techniques and an online algorithm to dynamically reassign flows among the available channels. Bandwidth usage and demand requests are monitored for bandwidth that is underutilized, and demand that is unsatisfied, and real time changes are made to the flow-to-channel mappings to improve the utilization of the total available bandwidth. The contribution of this research is to provide a working definition of fairness in a channel bonded environment, the implementation of several scheduling disciplines and evaluation of their adherence to that definition, and development of an algorithm to improve overall bandwidth utilization of the system

    Medium Access Control Protocols for Ad-Hoc Wireless Networks: A Survey

    Get PDF
    Studies of ad hoc wireless networks are a relatively new field gaining more popularity for various new applications. In these networks, the Medium Access Control (MAC) protocols are responsible for coordinating the access from active nodes. These protocols are of significant importance since the wireless communication channel is inherently prone to errors and unique problems such as the hidden-terminal problem, the exposed-terminal problem, and signal fading effects. Although a lot of research has been conducted on MAC protocols, the various issues involved have mostly been presented in isolation of each other. We therefore make an attempt to present a comprehensive survey of major schemes, integrating various related issues and challenges with a view to providing a big-picture outlook to this vast area. We present a classification of MAC protocols and their brief description, based on their operating principles and underlying features. In conclusion, we present a brief summary of key ideas and a general direction for future work

    Network delay control through adaptive queue management

    Get PDF
    Timeliness in delivering packets for delay-sensitive applications is an important QoS (Quality of Service) measure in many systems, notably those that need to provide real-time performance. In such systems, if delay-sensitive traffic is delivered to the destination beyond the deadline, then the packets will be rendered useless and dropped after received at the destination. Bandwidth that is already scarce and shared between network nodes is wasted in relaying these expired packets. This thesis proposes that a deterministic per-hop delay can be achieved by using a dynamic queue threshold concept to bound delay of each node. A deterministic per-hop delay is a key component in guaranteeing a deterministic end-to-end delay. The research aims to develop a generic approach that can constrain network delay of delay-sensitive traffic in a dynamic network. Two adaptive queue management schemes, namely, DTH (Dynamic THreshold) and ADTH (Adaptive DTH) are proposed to realize the claim. Both DTH and ADTH use the dynamic threshold concept to constrain queuing delay so that bounded average queuing delay can be achieved for the former and bounded maximum nodal delay can be achieved for the latter. DTH is an analytical approach, which uses queuing theory with superposition of N MMBP-2 (Markov Modulated Bernoulli Process) arrival processes to obtain a mapping relationship between average queuing delay and an appropriate queuing threshold, for queue management. While ADTH is an measurement-based algorithmic approach that can respond to the time-varying link quality and network dynamics in wireless ad hoc networks to constrain network delay. It manages a queue based on system performance measurements and feedback of error measured against a target delay requirement. Numerical analysis and Matlab simulation have been carried out for DTH for the purposes of validation and performance analysis. While ADTH has been evaluated in NS-2 simulation and implemented in a multi-hop wireless ad hoc network testbed for performance analysis. Results show that DTH and ADTH can constrain network delay based on the specified delay requirements, with higher packet loss as a trade-off

    Energy-efficient diversity combining for different access schemes in a multi-path dispersive channel

    Get PDF
    Dissertação para obtenção do Grau de Doutor em Engenharia Electrotécnica e ComputadoresThe forthcoming generation of mobile communications, 5G, will settle a new standard for a larger bandwidth and better Quality of Service (QoS). With the exploding growth rate of user generated data, wireless standards must cope with this growth and at the same time be energy efficient to avoid depleting the batteries of wireless devices. Besides these issues, in a broadband wireless setting QoS can be severely affected from a multipath dispersive channel and therefore be energy demanding. Cross-layered architectures are a good choice to enhance the overall performance of a wireless system. Examples of cross-layered Physical (PHY) - Medium Access Control (MAC) architectures are type-II Diversity Combining (DC) Hybrid-ARQ (H-ARQ) and Multi-user Detection (MUD) schemes. Cross-layered type-II DC H-ARQ schemes reuse failed packet transmissions to enhance data reception on posterior retransmissions; MUD schemes reuse data information from previously collided packets on posterior retransmissions to enhance data reception. For a multipath dispersive channel, a PHY layer analytical model is proposed for Single-Carrier with Frequency Domain Equalization (SC-FDE) that supports DC H-ARQ and MUD. Based on this analytical model, three PHY-MAC protocols are proposed. A crosslayered Time Division Multiple Access (TDMA) scheme that uses DC H-ARQ is modeled and its performance is studied in this document; the performance analysis shows that the scheme performs better with DC and achieves a better energy efficiency at the cost of a higher delay. A novel cross-layered prefix-assisted Direct-Sequence Code Division Multiple Access (DS-CDMA) scheme is proposed and modeled in this document, it uses principles of DC and MUD. This protocol performs better by means of additional retransmissions, achieving better energy efficiency, at the cost of higher redundancy from a code spreading gain. Finally, a novel cross-layered protocol H-ARQ Network Division Multiple Access (H-NDMA) is proposed and modeled, where the combination of DC H-ARQ and MUD is used with the intent of maximizing the system capacity with a lower delay; system results show that the proposed scheme achieves better energy efficiency and a better performance at the cost of a higher number of retransmissions. A comparison of the three cross-layered protocols is made, using the PHY analytical model, under normalized conditions using the same amount of maximum redundancy. Results show that the H-NDMA protocol, in general, obtains the best results, achieving a good performance and a good energy efficiency for a high channel load and low Signal-to-Noise Ratio (SNR). TDMA with DC H-ARQ achieves the best energy efficiency, although presenting the worst delay. Prefix-assisted DS-CDMA in the other hand shows good delay results but presents the worst throughput and energy efficiency

    Design of rate-adaptive MAC and medium aware routing protocols for multi-rate, multi-hop wireless networks

    Get PDF
    The IEEE 802.11 standard conformant wireless communication stations have multi-rate transmission capability. To achieve greater communication efficiency, multi-rate capable stations use rateadaptation to select appropriate transmission rate according to variations in the channel quality. The thesis presents two rate-adaptation schemes, each belonging to one of the two classes of rateadaptation schemes i.e.(1) the frame-transmission statistics based schemes, and (2) Signal-to-Noise Ratio (SNR) based, closed loop schemes. The SNR-based rate-adaptation scheme, proposed in this thesis uses a novel mechanism of delivering a receiver’s feedback to a transmitter; without requiring any modification in the standard frames as suggested by existing research. The frame-transmissionstatistics based rate adaptation solution uses an on-demand incremental strategy for selecting a rate-selection threshold. This solution is based on a cross-layer communication framework, where the rate-adaptation module uses information to/from the Application layer along with relevant information from the Medium Access Control (MAC) sub-layer. The proposed solutions are highly responsive when compared with existing rate-adaptation schemes; responsiveness is one of the key factors in the design of such protocols. The novel feedback mechanism makes it possible to achieve frame-loss differentiation with just three frames, avoiding the use of Request To Send/ Clear To Send (RTS/CTS) frames and further delays in this process. Performance tests have affirmed that the proposed rate-adaptation schemes are energy efficient; with efficiency up to 19% in specific test scenarios. In terms of throughput and frame loss-differentiation mechanisms, the proposed schemes have shown significantly better performance.Routing protocols for Mobile Ad-Hoc Networks (MANETs) use broadcast frames during the route discovery process. The 802.11 mandates the use of different transmission rates for broadcast and unicast (data-) frames. In many cases it causes creation of communication gray zones, where stations which are marked as ‘reachable neighbours’ using the broadcast frames (using lower transmission rate) are not accessible during normal, unicast communication (mainly at a higher rate). Similarly, higher device density, interference and mobility cause variable medium access delays. The IEEE 802.11e introduces four different MAC level queues for four access categories, maintaining service priority within the queues; which implies that frames from a higher priority queue are serviced more frequently than those belonging to lower priority queues. Such an enhancement at the MAC sub-layer introduces uneven queuing delays. Conventional routing protocols are unaware of such MAC specific constraints and as a result these factors are not considered which result in severe performance deterioration. To meet such challenges, the thesis presents a medium aware distance vector (MADV) routing protocol for MANETs. MADV uses MAC and physical layer (PHY) specific information in the route metric and maintains a separate route per-AC-per-destination in its routing tables. The MADV-metric can be incorporated into various routing rotocols and its applicability is determined by the possibility of provision of MAC dependent arameters that are used to determine the hop-by-hop MADV-metric values. Simulation tests and omparison with existing MANET protocols demonstrate the effectiveness of incorporating the medium dependent parameters and show that MADV is significantly better in terms of end-to-end delay and throughput.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Development and Performance Evaluation of Urban Mobility Applications and Services

    Get PDF
    L'abstract Ăš presente nell'allegato / the abstract is in the attachmen
    • 

    corecore