26,503 research outputs found

    Optimally fast incremental Manhattan plane embedding and planar tight span construction

    Full text link
    We describe a data structure, a rectangular complex, that can be used to represent hyperconvex metric spaces that have the same topology (although not necessarily the same distance function) as subsets of the plane. We show how to use this data structure to construct the tight span of a metric space given as an n x n distance matrix, when the tight span is homeomorphic to a subset of the plane, in time O(n^2), and to add a single point to a planar tight span in time O(n). As an application of this construction, we show how to test whether a given finite metric space embeds isometrically into the Manhattan plane in time O(n^2), and add a single point to the space and re-test whether it has such an embedding in time O(n).Comment: 39 pages, 15 figure

    An Efficient Algorithm for Computing High-Quality Paths amid Polygonal Obstacles

    Full text link
    We study a path-planning problem amid a set O\mathcal{O} of obstacles in R2\mathbb{R}^2, in which we wish to compute a short path between two points while also maintaining a high clearance from O\mathcal{O}; the clearance of a point is its distance from a nearest obstacle in O\mathcal{O}. Specifically, the problem asks for a path minimizing the reciprocal of the clearance integrated over the length of the path. We present the first polynomial-time approximation scheme for this problem. Let nn be the total number of obstacle vertices and let ε(0,1]\varepsilon \in (0,1]. Our algorithm computes in time O(n2ε2lognε)O(\frac{n^2}{\varepsilon ^2} \log \frac{n}{\varepsilon}) a path of total cost at most (1+ε)(1+\varepsilon) times the cost of the optimal path.Comment: A preliminary version of this work appear in the Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithm

    The Clique Problem in Ray Intersection Graphs

    Full text link
    Ray intersection graphs are intersection graphs of rays, or halflines, in the plane. We show that any planar graph has an even subdivision whose complement is a ray intersection graph. The construction can be done in polynomial time and implies that finding a maximum clique in a segment intersection graph is NP-hard. This solves a 21-year old open problem posed by Kratochv\'il and Ne\v{s}et\v{r}il.Comment: 12 pages, 7 figure

    Steinitz Theorems for Orthogonal Polyhedra

    Full text link
    We define a simple orthogonal polyhedron to be a three-dimensional polyhedron with the topology of a sphere in which three mutually-perpendicular edges meet at each vertex. By analogy to Steinitz's theorem characterizing the graphs of convex polyhedra, we find graph-theoretic characterizations of three classes of simple orthogonal polyhedra: corner polyhedra, which can be drawn by isometric projection in the plane with only one hidden vertex, xyz polyhedra, in which each axis-parallel line through a vertex contains exactly one other vertex, and arbitrary simple orthogonal polyhedra. In particular, the graphs of xyz polyhedra are exactly the bipartite cubic polyhedral graphs, and every bipartite cubic polyhedral graph with a 4-connected dual graph is the graph of a corner polyhedron. Based on our characterizations we find efficient algorithms for constructing orthogonal polyhedra from their graphs.Comment: 48 pages, 31 figure
    corecore