876 research outputs found

    Compiling Unit Clauses for the Warren Abstract Machine

    Get PDF
    This thesis describes the design, development, and installation of a computer program which compiles unit clauses generated in a Prolog-based environment at Argonne National Laboratories into Warren Abstract Machine (WAM) code. The program enhances the capabilities of the environment by providing rapid unification and subsumption tests for the very significant class of unit clauses. This should improve performance substantially for large programs that generate and use many unit clauses

    Why Ciao? An overview of the ciao system's design philosophy

    Get PDF
    Our intention in this note is not to provide a listing of the many features of the Ciao system: this can be found in part for example in the brochures announcing upcoming versions, in the Ciao website, or in more feature-oriented descriptions such as. Instead in this document we would like to describe the objectives and reasoning followed in our design as well as the fundamental characteristics that in our opinion make Ciao quite unique and hopefully really useful to you as a Ciao user

    Compartmentalized Connection Graphs for Concurrent Logic Programming II : Parallelism, Indexing and Unification

    Get PDF
    This report continues to document the development of a logic programming paradigm with implicit control, based in a compartmentalized connection graph theorem prover. Whilst the research has as it main goal the development of a language in which programs can be written with much less explicit control than PROLOG and its existing successors, a secondary goal is to exploit the immense parallelism inherent in the connection graph. The focus of this paper is the documentation of the extent of the parallelism inherent in the proof procedure. We characterize six different forms of parallelism These various forms of parallelism can be further classified into two classes: those associated with the performance of resolution steps, and those which are more concerned with unification. Unification is thus also a major topic of this report. In the first report of this series unification was identified as a major source of the cost of executing a logic program, or of proving a theorem. It turns out that deferring unification is the one of the best ways of dealing with it: hashing to perform it, and indexing to avoid it. Indexing and hashing, therefore, is the third topic covered in this report

    Induction of First-Order Decision Lists: Results on Learning the Past Tense of English Verbs

    Full text link
    This paper presents a method for inducing logic programs from examples that learns a new class of concepts called first-order decision lists, defined as ordered lists of clauses each ending in a cut. The method, called FOIDL, is based on FOIL (Quinlan, 1990) but employs intensional background knowledge and avoids the need for explicit negative examples. It is particularly useful for problems that involve rules with specific exceptions, such as learning the past-tense of English verbs, a task widely studied in the context of the symbolic/connectionist debate. FOIDL is able to learn concise, accurate programs for this problem from significantly fewer examples than previous methods (both connectionist and symbolic).Comment: See http://www.jair.org/ for any accompanying file

    Temporal reasoning in a logic programming language with modularity

    Get PDF
    Actualmente os Sistemas de Informação Organizacionais (SIO) lidam cada vez mais com informação que tem dependências temporais. Neste trabalho concebemos um ambiente de trabalho para construir e manter SIO Temporais. Este ambiente assenta sobre um linguagem lógica denominada Temporal Contextua) Logic Programming que integra modularidade com raciocínio temporal fazendo com que a utilização de um módulo dependa do tempo do contexto. Esta linguagem é a evolução de uma outra, também introduzida nesta tese, que combina Contextua) Logic Programming com Temporal Annotated Constraint Logic Programming, na qual a modularidade e o tempo são características ortogonais. Ambas as linguagens são formalmente discutidas e exemplificadas. As principais contribuições do trabalho descrito nesta tese incluem: • Optimização de Contextua) Logic Programming (CxLP) através de interpretação abstracta. • Sintaxe e semântica operacional para uma linguagem que combina de um modo independente as linguagens Temporal Annotated Constraint Logic Programming (TACLP) e CxLP. É apresentado um compilador para esta linguagem. • Linguagem (sintaxe e semântica) que integra de um modo inovador modularidade (CxLP) com raciocínio temporal (TACLP). Nesta linguagem a utilização de um dado módulo está dependente do tempo do contexto. É descrito um interpretador e um compilador para esta linguagem. • Ambiente de trabalho para construir e fazer a manutenção de SIO Temporais. Assenta sobre uma especificação revista da linguagem ISCO, adicionando classes e manipulação de dados temporais. É fornecido um compilador em que a linguagem resultante é a descrita no item anterior. ABSTRACT- Current Organisational Information Systems (OIS) deal with more and more Infor-mation that, is time dependent. In this work we provide a framework to construct and maintain Temporal OIS. This framework builds upon a logical language called Temporal Contextual. Logic Programming that deeply integrates modularity with tem-poral reasoning making the usage of a module time dependent. This language is an evolution of another one, also introduced in this thesis, that combines Contextual Logic Programming with Temporal Annotated Constraint Logic Programming where modularity and time are orthogonal features. Both languages are formally discussed and illustrated. The main contributions of the work described in this thesis include: • Optimisation of Contextual Logic Programming (CxLP) through abstract interpretation. • Syntax and operational semantics for an independent combination of the temporal framework Temporal Annotated Constraint Logic Programming (TACLP) and CxLP. A compiler for this language is also provided. • Language (syntax and semantics) that integrates in a innovative way modularity (CxLP) with temporal reasoning (TACLP). In this language the usage of a given module depends of the time of the context. An interpreter and a compiler for this language are described. • Framework to construct and maintain Temporal Organisational Information Systems. It builds upon a revised specification of the language ISCO, adding temporal classes and temporal data manipulation. A compiler targeting the language presented in the previous item is also given

    Proceedings of the Workshop on the lambda-Prolog Programming Language

    Get PDF
    The expressiveness of logic programs can be greatly increased over first-order Horn clauses through a stronger emphasis on logical connectives and by admitting various forms of higher-order quantification. The logic of hereditary Harrop formulas and the notion of uniform proof have been developed to provide a foundation for more expressive logic programming languages. The λ-Prolog language is actively being developed on top of these foundational considerations. The rich logical foundations of λ-Prolog provides it with declarative approaches to modular programming, hypothetical reasoning, higher-order programming, polymorphic typing, and meta-programming. These aspects of λ-Prolog have made it valuable as a higher-level language for the specification and implementation of programs in numerous areas, including natural language, automated reasoning, program transformation, and databases
    corecore