521 research outputs found

    Asynchronous Ultrasonic Trilateration for Indoor Positioning of Mobile Phones

    Get PDF
    Spatial awareness is fast becoming the key feature on today‟s mobile devices. While accurate outdoor navigation has been widely available for some time through Global Positioning Systems (GPS), accurate indoor positioning is still largely an unsolved problem. One major reason for this is that GPS and other Global Navigation Satellite Systems (GNSS) systems offer accuracy of a scale far different to that required for effective indoor navigation. Indoor positioning is also hindered by poor GPS signal quality, a major issue when developing dedicated indoor locationing systems. In addition, many indoor systems use specialized hardware to calculate accurate device position, as readily available wireless protocols have so far not delivered sufficient levels of accuracy. This research aims to investigate how the mobile phone‟s innate ability to produce sound (notably ultrasound) can be utilised to deliver more accurate indoor positioning than current methods. Experimental work covers limitations of mobile phone speakers in regard to generation of high frequencies, propagation patternsof ultrasound and their impact on maximum range, and asynchronous trilateration. This is followed by accuracy and reliability tests of an ultrasound positioning system prototype.This thesis proposes a new method of positioning a mobile phone indoors with accuracy substantially better than other contemporary positioning systems available on off-theshelf mobile devices. Given that smartphones can be programmed to correctly estimate direction, this research outlines a potentially significant advance towards a practical platform for indoor Location Based Services. Also a novel asynchronous trilateration algorithm is proposed that eliminates the need for synchronisation between the mobile device and the positioning infrastructure

    DEVELOPMENT OF MULTI-MODAL CONTROL INTERFACES FOR A SEMI-AUTONOMOUS WHEELCHAIR

    Get PDF
    The purpose of the project is to assist users with different levels of disabilities to control a semi-autonomous wheelchair. A semi-autonomous wheelchair developed by RIVeR Lab is able to perform assistive control to avoid obstacles and cliffs and to follow walls. With a joystick control adapter, the basic joystick of the wheelchair can take commands directly from computers. In addition to joystick mechanical adapter control, human-machine interaction and control methods such as voice and electromyography (EMG) are deployed, with the aim of enabling people with different levels and types of disabilities to control the wheelchair. These non-physical motion based user control interfaces allow people with limited mobility to control the wheelchair with a desired accuracy

    Perception of echo-acoustic flow in bats

    Get PDF

    Heterogeneous Robot Swarm – Hardware Design and Implementation

    Get PDF
    Swarm robotics is one the most fascinating, new research areas in the field of robotics, and one of it's grand challenge is the design of swarm robots that are both heterogeneous and self-sufficient. This can be crucial for robots exposed to environments that are unstructured or not easily accessible for a human operator, such as a collapsed building, the deep sea, or the surface of another planet. In Swarm robotics; self-assembly, self-reconfigurability and self-replication are among the most important characteristics as they can add extra capabilities and functionality to the robots besides the robustness, flexibility and scalability. Developing a swarm robot system with heterogeneity and larger behavioral repertoire is addressed in this work. This project is a comprehensive study of the hardware architecture of the homogeneous robot swarm and several problems related to the important aspects of robot's hardware, such as: sensory units, communication among the modules, and hardware components. Most of the hardware platforms used in the swarm robot system are homogeneous and use centralized control architecture for task completion. The hardware architecture is designed and implemented for UB heterogeneous robot swarm with both decentralized and centralized control, depending on the task requirement. Each robot in the UB heterogeneous swarm is equipped with different sensors, actuators, microcontroller and communication modules, which makes them distinct from each other from a hardware point of view. The methodology provides detailed guidelines in designing and implementing the hardware architecture of the heterogeneous UB robot swarm with plug and play approach. We divided the design module into three main categories - sensory modules, locomotion and manipulation, communication and control. We conjecture that the hardware architecture of heterogeneous swarm robots implemented in this work is the most sophisticated and modular design to date

    Volume 69 - Issue 7 - April, 1958

    Get PDF
    https://scholar.rose-hulman.edu/technic/1076/thumbnail.jp

    Marine GPS Search and Rescue System

    Get PDF
    When a person falls off of a large ship, it takes several minutes to assemble a rescue team, during which the person may be lost forever. To maximize the likelihood of rescue, a GPS-based rescue system was designed that could be automatically deployed. This system includes a small, battery-powered victim locating unit, designed to be installed on lifejackets; a rescue vehicle, which autonomously navigates to the victim using GPS; and a mothership host system, which provides navigation vectors to steer the rescue vehicle to the victim and back to the mothership successfully
    • …
    corecore