598 research outputs found

    Assessment of novel power electronic converters for drives applications

    Get PDF
    Phd ThesisIn the last twenty years, industrial and academic research has produced over one hundred new converter topologies for drives applications. Regrettably, most of the published work has been directed towards a single topology, giving an overall impression of a large number of unconnected, competing techniques. To provide insight into this wide ranging subject area, an overview of converter topologies is presented. Each topology is classified according to its mode of operation and a family tree is derived encompassing all converter types. Selected converters in each class are analysed, simulated and key operational characteristics identified. Issues associated with the practical implementation of analysed topologies are discussed in detail. Of all AC-AC conversion techniques, it is concluded that softswitching converter topologies offer the most attractive alternative to the standard hard switched converter in the power range up to 100kW because of their high performance to cost ratio. Of the softswitching converters, resonant dc-link topologies are shown to produce the poorest output performance although they offer the cheapest solution. Auxiliary pole commutated inverters, on the other hand, can achieve levels of performance approaching those of the hard switched topology while retaining the benefits of softswitching. It is concluded that the auxiliary commutated resonant pole inverter (ACPI) topology offers the greatest potential for exploitation in spite of its relatively high capital cost. Experimental results are presented for a 20kW hard switched inverter and an equivalent 20kW ACPI. In each case the converter controller is implanted using a digital signal processor. For the ACPI, a new control scheme, which eliminates the need for switch current and voltage sensors, is implemented. Results show that the ACPI produces lower overall losses when compared to its hardswitching counterpart. In addition, device voltage stress, output dv/dt and levels of high frequency output harmonics are all reduced. Finally, it is concluded that modularisation of the active devices, optimisation of semiconductor design and a reduction in the number of additional sensors through the use of novel control methods, such as those presented, will all play a part in the realisation of an economically viable system.Research Committee of the University of Newcastle upon Tyn

    Study of the generator/motor operation of induction machines in a high frequency link space power system

    Get PDF
    Static power conversion systems have traditionally utilized dc current or voltage source links for converting power from one ac or dc form to another since it readily achieves the temporary energy storage required to decouple the input from the output. Such links, however, result in bulky dc capacitors and/or inductors and lead to relatively high losses in the converters due to stresses on the semiconductor switches. The feasibility of utilizing a high frequency sinusoidal voltage link to accomplish the energy storage and decoupling function is examined. In particular, a type of resonant six pulse bridge interface converter is proposed which utilizes zero voltage switching principles to minimize switching losses and uses an easy to implement technique for pulse density modulation to control the amplitude, frequency, and the waveshape of the synthesized low frequency voltage or current. Adaptation of the proposed topology for power conversion to single-phase ac and dc voltage or current outputs is shown to be straight forward. The feasibility of the proposed power circuit and control technique for both active and passive loads are verified by means of simulation and experiment

    Online Switching Time Monitoring of SiC Devices Using Intelligent Gate Driver for Converter Performance Improvement

    Get PDF
    Most intelligent gate drivers designed for new state of the art WBG devices typically only focus on protection and driving capabilities of the devices. This paper introduces an intelligent gate driver that incorporates online switching time monitoring of silicon carbide (SiC) devices. For this specific case study, three timing conditions (turn-off delay time, turn-off time, and voltage commutation time) of a SiC phase-leg are online monitored. This online monitoring system is achieved through transient detection circuits and a micro-controller. These timing conditions are then utilized to develop converter-level benefits for a voltage-source inverter application using SiC devices. Junction temperature monitoring is realized through turn-off delay time monitoring. Dead-time optimization is achieved with turn-off time monitoring. Dead-time compensation is obtained with turn-off time and voltage commutation time monitoring. The case study converter assembled for testing purposes is a half-bridge inverter using two SiC devices in a phase-leg configuration. All timing conditions are correctly monitored within reasonable difference of the actual condition time. The half-bridge inverter can operate at 600 V DC input and successfully obtain a junction temperature measurement through monitored turn-off delay time and the calibration curve. In addition, dead-time control is realized to reduce device power loss and improve AC output power quality. Furthermore, the proposed online time monitoring system is board-level integrated with the gate driver and suitable for the chip level integration, enabling this practical approach to be cost-effective for end users

    DC-DC Power Converter Design for Application in Welding Power Source for the Retail Market

    Get PDF
    The purpose of this study is to design and analyze a DC-DC power converter for application in a welding power source that is cost-competitive with the more traditional, lower-tech welding power source topologies. This thesis first presents a background study of recent design approaches to DC-DC power converters, as they relate to application in welding power converters. The background study also surveys recent design approaches to welding power source controls. Evaluation of available options in DC-DC converter topologies and switching schemes for application in a welding power source is presented. Design methodology of a low-cost DC-DC converter for application in a welding power source is explained in detail. The design criteria are presented, and systematically solved for using a combination of electrical theory and computer-based modeling. The power converter design is modeled and verified through simulation. An economic analysis of the design proves it to be economically feasible, but still not as inexpensive as traditional, lower-tech solutions currently in use in the arc welding retail market. The most expensive component of the design is the power switching components, which have the potential for further cost reduction, and is recommended as future wor

    Design of a switched reluctance machine drive for automotive applications

    Get PDF

    Solid state transformer technologies and applications: a bibliographical survey

    Get PDF
    This paper presents a bibliographical survey of the work carried out to date on the solid state transformer (SST). The paper provides a list of references that cover most work related to this device and a short discussion about several aspects. The sections of the paper are respectively dedicated to summarize configurations and control strategies for each SST stage, the work carried out for optimizing the design of high-frequency transformers that could adequately work in the isolation stage of a SST, the efficiency of this device, the various modelling approaches and simulation tools used to analyze the performance of a SST (working a component of a microgrid, a distribution system or just in a standalone scenario), and the potential applications that this device is offering as a component of a power grid, a smart house, or a traction system.Peer ReviewedPostprint (published version

    Dual active bridge converters in solid state transformers

    Get PDF
    This dissertation presents a comprehensive study of Dual Active Bridge (DAB) converters for Solid State Transformers (SSTs). The first contribution is to propose an ac-ac DAB converter as a single stage SST. The proposed converter topology consists of two active H-bridges and one high-frequency transformer. Output voltage can be regulated when input voltage changes by phase shift modulation. Power is transferred from the leading bridge to the lagging bridge. It analyzes the steady-state operation and the range of zero-voltage switching. It develops a switch commutation scheme for the ac-ac DAB converters. Simulation and experiment results of a scaled down prototype are provided to verify the theoretical analysis. The second contribution is to develop a full-order continuous-time average model for dc-dc DAB converters. The transformer current in DAB converter is purely ac, making continuous-time modeling difficult. Instead, the proposed approach uses the dc terms and 1st order terms of transformer current and capacitor voltage as state variables. Singular perturbation analysis is performed to find the sufficient conditions to separate the dynamics of transformer current and capacitor voltage. Experimental results confirm that the proposed model predicts the small-signal frequency response more accurately. The third contribution addresses the controller design of a dc-dc DAB converter when driving a single-phase dc-ac inverter. It studies the effect of 120 Hz current generated by the single-phase inverter. The limitation of PI-controller is investigated. Two methods are proposed to reduce the voltage ripple at the output voltage of DAB converter. The first method helps the feedback loop with feedforward from inverter, while the second one adds an additional resonance controller to the feedback loop. Theoretical analysis, simulation and experiment results are provided to verify the effectiveness of the proposed methods --Abstract, page iii

    Design and Implementation of High-Efficiency, Lightweight, System-Friendly Solid-State Circuit Breaker

    Get PDF
    Direct current (DC) distribution system has shown potential over the alternative current (AC) distribution system in some application scenarios, e.g., electrified transportation, renewable energy, data center, etc. Because of the fast response speed, DC solid-state circuit breaker (SSCB) becomes a promising technology for the future power electronics intensive DC energy system with fault-tolerant capability. First, a thorough literature survey is performed to review the DC-SSCB technology. The key components for DC-SSCB, including power semiconductors, topologies, energy absorption units, and fault detection circuits, are studied. It is observed that the prior studies mainly focus on the basic interruption capability of the DC-SSCB. There are not so many studies on SSCB’s size optimization or system-friendly functions. Second, an insulated gate bipolar transistor (IGBT) based lightweight SSCB is proposed. With the reduced gate voltage, the proposed SSCB can limit the peak fault current without the bulky and heavy fault current limiting the inductor, which exists in the conventional SSCB circuit. Thus, the specific power density of the SSCB is substantially improved compared with the conventional design. Meanwhile, to understand the impact of different design parameters on the performance of SSCB, an analytical model is built to establish the relationship between SSCB dynamic performance and operating conditions considering the key components and circuit parasitics. Simulation and test results demonstrate the accuracy of the proposed model. To limit the fault current with the proposed SSCB without a current limiting inductor, power semiconductors need to operate in the active region temporarily. During this interval, a severe voltage oscillation has been observed experimentally, leading to the DC-SSCB overstress and eventually the failure. A detailed MATLAB/Simulink model is built to understand the mechanism causing the voltage oscillation. Three suppression methods using enhanced gate drive circuitry are proposed and compared. Test results based on a 2kV/1kA SSCB prototype demonstrate the effectiveness of the proposed oscillation mitigation method and the accuracy of the derived model. Meanwhile, when the system fault impedance is close to zero (e.g., high di/dt), the influence of the parasitic inductance contributed by interconnection (e.g., bus bar, module package, etc.) cannot be neglected. To study the influence of the bus bar connections on SSCB with high di/dt, a Q3D extractor is adopted to extract the parasitic parameters of the SSCB and understand the influence of different bus bar connections. A vertical bus bar is proposed to suppress the side effect and verified by the Q3D extractor and experimental results. Finally, a system-friendly SSCB is demonstrated. The proposed gate drive enables the SSCB to operate in the current limitation mode for the overcurrent limitation. The current limitation level and limitation time can be tuned by the gate drive. Then, this dissertation provides an all-in-one solution with integrated circuitries as the fault detector, actuator for the semiconductor’s operating status regulation, and coordinated control. This allows the developed SSCB to limit system fault current not exceeding short-circuit current rating (SCCR) and also take different responses under different fault cases. The feasibility and the effectiveness of the proposed system-friendly SSCB are validated with experimental results based on a 200V/10A SSCB demonstrator

    Critical Aspects of Electric Motor Drive Controllers and Mitigation of Torque Ripple - Review

    Get PDF
    Electric vehicles (EVs) are playing a vital role in sustainable transportation. It is estimated that by 2030, Battery EVs will become mainstream for passenger car transportation. Even though EVs are gaining interest in sustainable transportation, the future of EV power transmission is facing vital concerns and open research challenges. Considering the case of torque ripple mitigation and improved reliability control techniques in motors, many motor drive control algorithms fail to provide efficient control. To efficiently address this issue, control techniques such as Field Orientation Control (FOC), Direct Torque Control (DTC), Model Predictive Control (MPC), Sliding Mode Control (SMC), and Intelligent Control (IC) techniques are used in the motor drive control algorithms. This literature survey exclusively compares the various advanced control techniques for conventionally used EV motors such as Permanent Magnet Synchronous Motor (PMSM), Brushless Direct Current Motor (BLDC), Switched Reluctance Motor (SRM), and Induction Motors (IM). Furthermore, this paper discusses the EV-motors history, types of EVmotors, EV-motor drives powertrain mathematical modelling, and design procedure of EV-motors. The hardware results have also been compared with different control techniques for BLDC and SRM hub motors. Future direction towards the design of EV by critical selection of motors and their control techniques to minimize the torque ripple and other research opportunities to enhance the performance of EVs are also presented.publishedVersio

    Soft switching techniques for multilevel inverters

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-Graduação em Engenharia Elétrica
    • 

    corecore