287 research outputs found

    Isogeometric iFEM analysis of thin shell structures

    Get PDF
    Shape sensing is one of most crucial components of typical structural health monitoring systems and has become a promising technology for future large-scale engineering structures to achieve significant improvement in their safety, reliability, and affordability. The inverse finite element method (iFEM) is an innovative shape-sensing technique that was introduced to perform three-dimensional displacement reconstruction of structures using in situ surface strain measurements. Moreover, isogeometric analysis (IGA) presents smooth function spaces such as non-uniform rational basis splines (NURBS), to numerically solve a number of engineering problems, and recently received a great deal of attention from both academy and industry. In this study, we propose a novel “isogeometric iFEM approach” for the shape sensing of thin and curved shell structures, through coupling the NURBS-based IGA together with the iFEM methodology. The main aim is to represent exact computational geometry, simplify mesh refinement, use smooth basis/shape functions, and allocate a lower number of strain sensors for shape sensing. For numerical implementation, a rotation-free isogeometric inverse-shell element (isogeometric Kirchhoff–Love inverse-shell element (iKLS)) is developed by utilizing the kinematics of the Kirchhoff–Love shell theory in convected curvilinear coordinates. Therefore, the isogeometric iFEM methodology presented herein minimizes a weighted-least-squares functional that uses membrane and bending section strains, consistent with the classical shell theory. Various validation and demonstration cases are presented, including Scordelis–Lo roof, pinched hemisphere, and partly clamped hyperbolic paraboloid. Finally, the effect of sensor locations, number of sensors, and the discretization of the geometry on solution accuracy is examined and the high accuracy and practical aspects of isogeometric iFEM analysis for linear/nonlinear shape sensing of curved shells are clearly demonstrated

    The multiplicative deformation split for shells with application to growth, chemical swelling, thermoelasticity, viscoelasticity and elastoplasticity

    Full text link
    This work presents a general unified theory for coupled nonlinear elastic and inelastic deformations of curved thin shells. The coupling is based on a multiplicative decomposition of the surface deformation gradient. The kinematics of this decomposition is examined in detail. In particular, the dependency of various kinematical quantities, such as area change and curvature, on the elastic and inelastic strains is discussed. This is essential for the development of general constitutive models. In order to fully explore the coupling between elastic and different inelastic deformations, the surface balance laws for mass, momentum, energy and entropy are examined in the context of the multiplicative decomposition. Based on the second law of thermodynamics, the general constitutive relations are then derived. Two cases are considered: Independent inelastic strains, and inelastic strains that are functions of temperature and concentration. The constitutive relations are illustrated by several nonlinear examples on growth, chemical swelling, thermoelasticity, viscoelasticity and elastoplasticity of shells. The formulation is fully expressed in curvilinear coordinates leading to compact and elegant expressions for the kinematics, balance laws and constitutive relations

    A new anisotropic bending model for nonlinear shells: Comparison with existing models and isogeometric finite element implementation

    Full text link
    A new nonlinear hyperelastic bending model for shells formulated directly in surface form is presented, and compared to four prominently used bending models. Through an essential set of elementary nonlinear bending test cases, the stresses and moments of each model are examined analytically. Only the proposed bending model passes all the test cases while the other bending models either fail or only pass the test cases for small deformations. The proposed new bending model can handle large deformations and initially curved surfaces. It is based on the principal curvatures and their directions in the initial configuration, and it thus can have different bending moduli along those directions. These characteristics make it flexible in modeling a given material, while it does not suffer from the pathologies of existing bending models. Further, the bending models are compared computationally through four classical benchmark examples and one contact example. As the underlying shell theory is based on Kirchhoff-Love kinematics, isogeometric NURBS shape functions are used to discretize the shell surface. The linearization and efficient finite element implementation of the proposed new model are also provided

    Kirchhoff-Love shell representation and analysis using triangle configuration B-splines

    Full text link
    This paper presents the application of triangle configuration B-splines (TCB-splines) for representing and analyzing the Kirchhoff-Love shell in the context of isogeometric analysis (IGA). The Kirchhoff-Love shell formulation requires global C1C^1-continuous basis functions. The nonuniform rational B-spline (NURBS)-based IGA has been extensively used for developing Kirchhoff-Love shell elements. However, shells with complex geometries inevitably need multiple patches and trimming techniques, where stitching patches with high continuity is a challenge. On the other hand, due to their unstructured nature, TCB-splines can accommodate general polygonal domains, have local refinement, and are flexible to model complex geometries with C1C^1 continuity, which naturally fit into the Kirchhoff-Love shell formulation with complex geometries. Therefore, we propose to use TCB-splines as basis functions for geometric representation and solution approximation. We apply our method to both linear and nonlinear benchmark shell problems, where the accuracy and robustness are validated. The applicability of the proposed approach to shell analysis is further exemplified by performing geometrically nonlinear Kirchhoff-Love shell simulations of a pipe junction and a front bumper represented by a single patch of TCB-splines

    Use of interpolation methods for modeling the stress-strain state of operated oil storage tanks

    Get PDF
    The aim of the research is the comparison of two approaches for computer modeling of the stress-strain state of thin-walled shells of engineering structures, considering the imperfections of the geometric shapes arising due to their operation. The object of the study is the operated steel vertical cylindrical reservoir with imperfections of the geometric shape intended for storage of petroleum products. The first, so-called classical, approach provides geometric modeling of the surface of the tank's shell with the subsequent import of the geometric model into one of the systems of finite element analysis to calculate the stress-strain state of the structure and determine its technical condition, and the possibility of further operation. The geometric modeling of the shell surface with imperfections was performed using a two-dimensional interpolation method based on the 1st order smoothness outlines implemented in the point calculus. The calculation of the stress-strain state of the shell was carried out in the SCAD Office computer complex, taking into account geometric and structural non-linearity on the basis of the octahedral tangential stress theory. The second approach assumes modeling of an array of functions of vertical deflection of the tank wall by means of interpolation, solution of an array of differential equations of the elastic cylindrical shell under axisymmetric loading, improved by introduction of vertical deflection functions of the wall, followed by two-dimensional interpolation and analysis of the deformed state of the shell based on displacements arising in the tank wall from the hydrostatic load. As a result of the effective use of two-dimensional interpolation in the process of implementing the second approach, it was possible to achieve a significant increase in the speed of the numerical solution while maintaining sufficient accuracy for engineering calculations

    SOLID-SHELL FINITE ELEMENT MODELS FOR EXPLICIT SIMULATIONS OF CRACK PROPAGATION IN THIN STRUCTURES

    Get PDF
    Crack propagation in thin shell structures due to cutting is conveniently simulated using explicit finite element approaches, in view of the high nonlinearity of the problem. Solidshell elements are usually preferred for the discretization in the presence of complex material behavior and degradation phenomena such as delamination, since they allow for a correct representation of the thickness geometry. However, in solid-shell elements the small thickness leads to a very high maximum eigenfrequency, which imply very small stable time-steps. A new selective mass scaling technique is proposed to increase the time-step size without affecting accuracy. New ”directional” cohesive interface elements are used in conjunction with selective mass scaling to account for the interaction with a sharp blade in cutting processes of thin ductile shells

    NeuralClothSim: Neural Deformation Fields Meet the Kirchhoff-Love Thin Shell Theory

    Full text link
    Cloth simulation is an extensively studied problem, with a plethora of solutions available in computer graphics literature. Existing cloth simulators produce realistic cloth deformations that obey different types of boundary conditions. Nevertheless, their operational principle remains limited in several ways: They operate on explicit surface representations with a fixed spatial resolution, perform a series of discretised updates (which bounds their temporal resolution), and require comparably large amounts of storage. Moreover, back-propagating gradients through the existing solvers is often not straightforward, which poses additional challenges when integrating them into modern neural architectures. In response to the limitations mentioned above, this paper takes a fundamentally different perspective on physically-plausible cloth simulation and re-thinks this long-standing problem: We propose NeuralClothSim, i.e., a new cloth simulation approach using thin shells, in which surface evolution is encoded in neural network weights. Our memory-efficient and differentiable solver operates on a new continuous coordinate-based representation of dynamic surfaces, i.e., neural deformation fields (NDFs); it supervises NDF evolution with the rules of the non-linear Kirchhoff-Love shell theory. NDFs are adaptive in the sense that they 1) allocate their capacity to the deformation details as the latter arise during the cloth evolution and 2) allow surface state queries at arbitrary spatial and temporal resolutions without retraining. We show how to train our NeuralClothSim solver while imposing hard boundary conditions and demonstrate multiple applications, such as material interpolation and simulation editing. The experimental results highlight the effectiveness of our formulation and its potential impact.Comment: 27 pages, 22 figures and 3 tables; project page: https://4dqv.mpi-inf.mpg.de/NeuralClothSim
    • …
    corecore