69 research outputs found

    Space-time rate splitting for the MISO BC with magnitude CSIT

    Get PDF
    A novel coding strategy is proposed for a broadcast setting with two transmitter (TX) antennas and two single-antenna receivers (RX). The strategy consists of using space-time block coding to send a common message (to be decoded by both RXs) across the two TX antennas, while each TX antenna also sends a private message to one of the RXs. The relative weight of the private and common messages from each TX antenna is tuned to maximize the instantaneous achievable sum-rate of the channel. Closed-form expressions for the optimal weight factors are derived. In terms of the generalized degrees of freedom (GDoF) metric, the new scheme is able to achieve the sum-GDoF with finite precision channel state information at the transmitter (CSIT) of the two user broadcast channel. Moreover, as opposed to the existing rate-splitting schemes, the proposed scheme yields instantaneous achievable rates that are independent of the channel phases. This property is instrumental for link adaptation when only magnitude CSIT is available. Our numerical results indeed demonstrate the superiority of the scheme for the 2-user setting in case of magnitude CSIT. Extension to a more general K -user scenario is briefly discussed.Grant numbers : SatNEx IV - Satellite Network of Experts IV project. © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    On the application of quasi-degradation to MISO-NOMA downlink

    Get PDF
    In this paper, the design of non-orthogonal multiple access (NOMA) in a multiple-input-single-output (MISO) downlink scenario is investigated. The impact of the recently developed concept, quasi-degradation, on NOMA downlink transmission is first studied. Then, a Hybrid NOMA (H-NOMA) precoding algorithm, based on this concept, is proposed. By exploiting the properties of H-NOMA precoding, a low-complexity sequential user pairing algorithm is consequently developed, to further improve the overall system performance. Both analytical and numerical results are provided to demonstrate the performance of the H-NOMA precoding through the average power consumption and outage probability, while conventional schemes, as dirty-paper coding and zero-forcing beamforming, are used as benchmarking

    On the Non-Orthogonal Layered Broadcast Codes in Cooperative Wireless Networks

    Get PDF
    A multi-fold increase in spectral efficiency and throughput are envisioned in the fifth generation of cellular networks to meet the requirements of International Telecommunication Union (ITU) IMT-2020 on massive connectivity and tremendous data traffic. This is achieved by evolution in three aspects of current networks. The first aspect is shrinking the cell sizes and deploying dense picocells and femtocells to boost the spectral reuse. The second is to allocate more spectrum resources including millimeter-wave bands. The third is deploying highly efficient communications and multiple access techniques. Non-orthogonal multiple access (NOMA) is a promising communication technique that complements the current commercial spectrum access approach to boost the spectral efficiency, where different data streams/users’ data share the same time, frequency and code resource blocks (sub-bands) via superimposition with each other. The receivers decode their own messages by deploying the successive interference cancellation (SIC) decoding rule. It is known that the NOMA coding is superior to conventional orthogonal multiple access (OMA) coding, where the resources are split among the users in either time or frequency domain. The NOMA based coding has been incorporated into other coding techniques including multi-input multi-output (MIMO), orthogonal frequency division multiplexing (OFDM), cognitive radio and cooperative techniques. In cooperative NOMA codes, either dedicated relay stations or stronger users with better channel conditions, act as relay to leverage the spatial diversity and to boost the performance of the other users. The advantage of spatial diversity gain in relay-based NOMA codes, is deployed to extend the coverage area of the network, to mitigate the fading effect of multipath channel and to increase the system throughput, hence improving the system efficiency. In this dissertation we consider the multimedia content delivery and machine type communications over 5G networks, where scalable content and low complexity encoders is of interest. We propose cross-layer design for transmission of successive refinement (SR) source code interplayed with non-orthogonal layered broadcast code for deployment in several cooperative network architectures. Firstly, we consider a multi-relay coding scheme where a source node is assisted by a half-duplex multi-relay non-orthogonal amplify-forward (NAF) network to communicate with a destination node. Assuming the channel state information (CSI) is not available at the source node, the achievable layered diversity multiplexing tradeoff (DMT) curve is derived. Then, by taking distortion exponent (DE) as the figure of merit, several achievable lower bounds are proved, and the optimal expected distortion performance under high signal to noise ratio (SNR) approximation is explicitly obtained. It is shown that the proposed coding can achieve the multi-input single-output (MISO) upper bound under certain regions of bandwidth ratios, by which the optimal performance in these regions can be explicitly characterized. Further the non-orthogonal layered coding scheme is extended to a multi-hop MIMO decode-forward (DF) relay network where a set of DE lower bounds is derived. Secondly, we propose a layered cooperative multi-user scheme based on non-orthogonal amplify-forward (NAF) relaying and non-orthogonal multiple access (NOMA) codes, aiming to achieve multi-user uplink transmissions with low complexity and low signaling overhead, particularly applicable to the machine type communications (MTC) and internet of things (IoT) systems. By assuming no CSI available at the transmitting nodes, the proposed layered codes make the transmission rate of each user adaptive to the channel realization. We derive the close-form analytical results on outage probability and the DMT curve of the proposed layered NAF codes in the asymptotic regime of high SNR, and optimize the end-to-end performance in terms of the exponential decay rate of expected distortion. Thirdly, we consider a single relay network and study the non-orthogonal layered scheme in the general SNR regime. A layered relaying scheme based on compress-forward (CF) is introduced, where optimization of end to end performance in terms of expected distortion is conducted to jointly determine network parameters. We further derive the explicit analytical optimal solution with two layers in the absence of channel knowledge. Finally, we consider the problem of multicast of multi-resolution layered messages over downlink of a cellular system with the assumption of CSI is not available at the base station (BS). Without loss generality, spatially random users are divided into two groups, where the near group users with better channel conditions decode for both layers, while the users in the second group decode for base layer only. Once the BS launches a multicast message, the first group users who successfully decoded the message, deploy a distributed cooperating scheme to assist the transmission to the other users. The cooperative scheme is naive but we will prove it can effectively enhance the network capacity. Closed form outage probability is explicitly derived for the two groups of users. Further it is shown that diversity order equal to the number of users in the near group is achievable, hence the coding gain of the proposed distributed scheme fully compensate the lack of CSI at the BS in terms of diversity order

    Large System Analysis of Downlink MISO-NOMA System via Regularized Zero-Forcing Precoding with Imperfect CSIT

    Get PDF
    This letter studies the multiple-input single-output (MISO) non-orthogonal multiple-access (NOMA) downlink using regularized zero-forcing (RZF) precoding with imperfect channel state information (CSI). We first propose a new user scheduling scheme based on imperfect CSI and a model to characterize the channel correlation between the weak and strong users. Then we derive an approximate expression of the ergodic sum-rate using large-system random matrix theory. This approximation permits us to derive the optimal power allocation scheme that satisfies the rate requirement of the weak users. Simulation results are presented to confirm the accuracy of the approximation and reveal the relationships between the ergodic sum-rate, the channel correlation, and other system parameters
    corecore