62 research outputs found

    A NFV system to support configurable and automated multi-UAV service deployments

    Get PDF
    Proceeding of: DroNet 2018, 4th ACM Workshop on Micro Aerial Vehicle Networks, Systems, and Applications (Co-located with ACM MobiSys 2018)In this paper, we explore the strong potential of Network Function Virtualization (NFV) technologies to enable multi-mission small unmanned aircraft systems. In this context, we analyze the main challenges of using NFV technologies in this emergent field, and we present the design of an NFV system that supports the flexible, automated and cost-effective deployment of network services over small unmanned aerial vehicles. To validate our design, we implemented its most relevant components with open-source technologies, using this first prototype of the system to carry out a set of preliminary experiments that showcase its feasibility and functionality.This article has been partially supported by the European H2020 5GinFIRE project (grant agreement 732497), and by the 5GCity project (TEC2016-76795- C6-3-R) funded by the Spanish Ministry of Economy and Competitiveness

    NFV orchestration on intermittently available SUAV platforms: challenges and hurdles

    Get PDF
    Proceeding of: IEEE INFOCOM 2019 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS MiSARN 2019: Mission-Oriented Wireless Sensor, UAV and Robot Networking), 29 April-2 May 2019 Paris, FranceIn this paper, we analyze the main challenges and issues related with the orchestration of Virtualized Network Functions (VNFs) on Small Unmanned Aerial Vehicles (SUAVs). Our analysis considers a reference scenario where a number of SUAVs are deployed over a delimited geographic area and provide a mobile cloud environment that supports the deployment of functionalities using Network Functions Virtualization (NFV) technologies. The orchestration of services in this reference scenario presents different challenges, due to the constrained capacity and limited lifetime of battery-powered SUAVs, the intermittent availability of network communications, and the need to consider enhanced policies for the allocation of virtual functions to SUAVs. Finally, we perform a first exploratory evaluation of the identified challenges and issues, using a well-known and widely adopted virtualized infrastructure manager, i.e., OpenStack.This article has been partially supported by the European H2020 5GRANGE project (grant agreement 777137), and by the 5GCity project (TEC2016-76795- C6-3-R) funded by the Spanish Ministry of Economy and Competitiveness

    A Survey on Cellular-connected UAVs: Design Challenges, Enabling 5G/B5G Innovations, and Experimental Advancements

    Full text link
    As an emerging field of aerial robotics, Unmanned Aerial Vehicles (UAVs) have gained significant research interest within the wireless networking research community. As soon as national legislations allow UAVs to fly autonomously, we will see swarms of UAV populating the sky of our smart cities to accomplish different missions: parcel delivery, infrastructure monitoring, event filming, surveillance, tracking, etc. The UAV ecosystem can benefit from existing 5G/B5G cellular networks, which can be exploited in different ways to enhance UAV communications. Because of the inherent characteristics of UAV pertaining to flexible mobility in 3D space, autonomous operation and intelligent placement, these smart devices cater to wide range of wireless applications and use cases. This work aims at presenting an in-depth exploration of integration synergies between 5G/B5G cellular systems and UAV technology, where the UAV is integrated as a new aerial User Equipment (UE) to existing cellular networks. In this integration, the UAVs perform the role of flying users within cellular coverage, thus they are termed as cellular-connected UAVs (a.k.a. UAV-UE, drone-UE, 5G-connected drone, or aerial user). The main focus of this work is to present an extensive study of integration challenges along with key 5G/B5G technological innovations and ongoing efforts in design prototyping and field trials corroborating cellular-connected UAVs. This study highlights recent progress updates with respect to 3GPP standardization and emphasizes socio-economic concerns that must be accounted before successful adoption of this promising technology. Various open problems paving the path to future research opportunities are also discussed.Comment: 30 pages, 18 figures, 9 tables, 102 references, journal submissio

    Enabling Multi-Mission Interoperable UAS Using Data-Centric Communications

    Get PDF
    We claim the strong potential of data-centric communications in Unmanned Aircraft Systems (UAS), as a suitable paradigm to enhance collaborative operations via efficient information sharing, as well as to build systems supporting flexible mission objectives. In particular, this paper analyzes the primary contributions to data dissemination in UAS that can be given by the Data Distribution Service (DDS) open standard, as a solid and industry-mature data-centric technology. Our study is not restricted to traditional UAS where a set of Unmanned Aerial Vehicles (UAVs) transmit data to the ground station that controls them. Instead, we contemplate flexible UAS deployments with multiple UAV units of different sizes and capacities, which are interconnected to form an aerial communication network, enabling the provision of value-added services over a delimited geographical area. In addition, the paper outlines an approach to address the issues inherent to the utilization of network-level multicast, a baseline technology in DDS, in the considered UAS deployments. We complete our analysis with a practical experience aiming at validating the feasibility and the advantages of using DDS in a multi-UAV deployment scenario. For this purpose, we use a UAS testbed built up by heterogeneous hardware equipment, including a number of interconnected micro aerial vehicles, carrying single board computers as payload, as well as real equipment from a tactical UAS from the Spanish Ministry of Defense.This article was partially supported by the European H2020 5GRANGE project (grant agreement 777137), and by the 5GCity project (TEC2016-76795-C6-3-R) funded by the SpanishMinistry of Economy and Competitiveness

    Milano: una visión futura para un UAS táctico

    Get PDF
    Proceeding of: VI Congreso Nacional de i+d en Defensa y Seguridad (DESEI+D 2018), Valladolid, 20-22 de noviembre de 2018En este artículo se presenta el nuevo sistema de aeronaves no tripuladas Milano, del Instituto Nacional de Técnica Aeroespacial (INTA). Con una autonomía de vuelo de 20 horas, una carga útil de hasta 150 Kg, y un sistema de comunicaciones radio TCP/IP, el sistema desarrollado posibilita misiones de observación y vigilancia que van más allá de las ofrecidas por un sistema táctico tradicional. En el artículo se identifican las principales características del sistema Milano, en particular las relativas a su sistema de comunicaciones en línea de vista radioeléctrica basado en el protocolo IP. Asimismo, se describen las líneas actuales de trabajo consideradas para la evolución de este sistema: 1) mecanismos de vuelo cooperativo; 2) nuevas evoluciones del sistema de comunicaciones radio en línea de vista; 3) desarrollo de mecanismos para la distribución segura de la información de tele-medida de las aeronaves; y 4) estudio de nuevos enfoques disruptivos para favorecer el despliegue flexible de servicios de telecomunicaciones sobre la plataforma de comunicaciones del Milano.El trabajo realizado por Víctor Sánchez y Borja Nogales ha sido parcialmente financiado por la Unión Europea, mediante el proyecto del H2020 5GinFIRE (grant agreement 732497), y por el Ministerio de Economía y Competitividad, a través del proyecto 5GCITY (TEC2016-76795-C6-3-R)

    Contributions to energy-aware demand-response systems using SDN and NFV for fog computing

    Get PDF
    Ever-increasing energy consumption, the depletion of non-renewable resources, the climate impact associated with energy generation, and finite energy-production capacity are important concerns worldwide that drive the urgent creation of new energy management and consumption schemes. In this regard, by leveraging the massive connectivity provided by emerging communications such as the 5G systems, this thesis proposes a long-term sustainable Demand-Response solution for the adaptive and efficient management of available energy consumption for Internet of Things (IoT) infrastructures, in which energy utilization is optimized based on the available supply. In the proposed approach, energy management focuses on consumer devices (e.g., appliances such as a light bulb or a screen). In this regard, by proposing that each consumer device be part of an IoT infrastructure, it is feasible to control its respective consumption. The proposal includes an architecture that uses Network Functions Virtualization (NFV) and Software Defined Networking technologies as enablers to promote the primary use of energy from renewable sources. Associated with architecture, this thesis presents a novel consumption model conditioned on availability in which consumers are part of the management process. To efficiently use the energy from renewable and non-renewable sources, several management strategies are herein proposed, such as the prioritization of the energy supply, workload scheduling using time-shifting capabilities, and quality degradation to decrease- the power demanded by consumers if needed. The adaptive energy management solution is modeled as an Integer Linear Programming, and its complexity has been identified to be NP-Hard. To verify the improvements in energy utilization, an optimal algorithmic solution based on a brute force search has been implemented and evaluated. Because the hardness of the adaptive energy management problem and the non-polynomial growth of its optimal solution, which is limited to energy management for a small number of energy demands (e.g., 10 energy demands) and small values of management mechanisms, several faster suboptimal algorithmic strategies have been proposed and implemented. In this context, at the first stage, we implemented three heuristic strategies: a greedy strategy (GreedyTs), a genetic-algorithm-based solution (GATs), and a dynamic programming approach (DPTs). Then, we incorporated into both the optimal and heuristic strategies a prepartitioning method in which the total set of analyzed services is divided into subsets of smaller size and complexity that are solved iteratively. As a result of the adaptive energy management in this thesis, we present eight strategies, one timal and seven heuristic, that when deployed in communications infrastructures such as the NFV domain, seek the best possible scheduling of demands, which lead to efficient energy utilization. The performance of the algorithmic strategies has been validated through extensive simulations in several scenarios, demonstrating improvements in energy consumption and the processing of energy demands. Additionally, the simulation results revealed that the heuristic approaches produce high-quality solutions close to the optimal while executing among two and seven orders of magnitude faster and with applicability to scenarios with thousands and hundreds of thousands of energy demands. This thesis also explores possible application scenarios of both the proposed architecture for adaptive energy management and algorithmic strategies. In this regard, we present some examples, including adaptive energy management in-home systems and 5G networks slicing, energy-aware management solutions for unmanned aerial vehicles, also known as drones, and applicability for the efficient allocation of spectrum in flex-grid optical networks. Finally, this thesis presents open research problems and discusses other application scenarios and future work.El constante aumento del consumo de energía, el agotamiento de los recursos no renovables, el impacto climático asociado con la generación de energía y la capacidad finita de producción de energía son preocupaciones importantes en todo el mundo que impulsan la creación urgente de nuevos esquemas de consumo y gestión de energía. Al aprovechar la conectividad masiva que brindan las comunicaciones emergentes como los sistemas 5G, esta tesis propone una solución de Respuesta a la Demanda sostenible a largo plazo para la gestión adaptativa y eficiente del consumo de energía disponible para las infraestructuras de Internet of Things (IoT), en el que se optimiza la utilización de la energía en función del suministro disponible. En el enfoque propuesto, la gestión de la energía se centra en los dispositivos de consumo (por ejemplo, electrodomésticos). En este sentido, al proponer que cada dispositivo de consumo sea parte de una infraestructura IoT, es factible controlar su respectivo consumo. La propuesta incluye una arquitectura que utiliza tecnologías de Network Functions Virtualization (NFV) y Software Defined Networking como habilitadores para promover el uso principal de energía de fuentes renovables. Asociada a la arquitectura, esta tesis presenta un modelo de consumo condicionado a la disponibilidad en el que los consumidores son parte del proceso de gestión. Para utilizar eficientemente la energía de fuentes renovables y no renovables, se proponen varias estrategias de gestión, como la priorización del suministro de energía, la programación de la carga de trabajo utilizando capacidades de cambio de tiempo y la degradación de la calidad para disminuir la potencia demandada. La solución de gestión de energía adaptativa se modela como un problema de programación lineal entera con complejidad NP-Hard. Para verificar las mejoras en la utilización de energía, se ha implementado y evaluado una solución algorítmica óptima basada en una búsqueda de fuerza bruta. Debido a la dureza del problema de gestión de energía adaptativa y el crecimiento no polinomial de su solución óptima, que se limita a la gestión de energía para un pequeño número de demandas de energía (por ejemplo, 10 demandas) y pequeños valores de los mecanismos de gestión, varias estrategias algorítmicas subóptimos más rápidos se han propuesto. En este contexto, en la primera etapa, implementamos tres estrategias heurísticas: una estrategia codiciosa (GreedyTs), una solución basada en algoritmos genéticos (GATs) y un enfoque de programación dinámica (DPTs). Luego, incorporamos tanto en la estrategia óptima como en la- heurística un método de prepartición en el que el conjunto total de servicios analizados se divide en subconjuntos de menor tamaño y complejidad que se resuelven iterativamente. Como resultado de la gestión adaptativa de la energía en esta tesis, presentamos ocho estrategias, una óptima y siete heurísticas, que cuando se despliegan en infraestructuras de comunicaciones como el dominio NFV, buscan la mejor programación posible de las demandas, que conduzcan a un uso eficiente de la energía. El desempeño de las estrategias algorítmicas ha sido validado a través de extensas simulaciones en varios escenarios, demostrando mejoras en el consumo de energía y el procesamiento de las demandas de energía. Los resultados de la simulación revelaron que los enfoques heurísticos producen soluciones de alta calidad cercanas a las óptimas mientras se ejecutan entre dos y siete órdenes de magnitud más rápido y con aplicabilidad a escenarios con miles y cientos de miles de demandas de energía. Esta tesis también explora posibles escenarios de aplicación tanto de la arquitectura propuesta para la gestión adaptativa de la energía como de las estrategias algorítmicas. En este sentido, presentamos algunos ejemplos, que incluyen sistemas de gestión de energía adaptativa en el hogar, en 5G networkPostprint (published version

    Increasing service visibility for future, softwarised air traffic management data networks

    Get PDF
    Air Traffic Management (ATM) is at an exciting frontier. The volume of air traffic is reaching the safe limits of current infrastructure. Yet, demand for more air traffic continues. To meet capacity demands, ATM data networks are increasing in complexity with: greater infrastructure integration, higher availability and precision of services; and the introduction of unmanned systems. Official recommendations into previous disruptive outages have high-lighted the need for operators to have richer monitoring capabilities and operational systems visibility, on-demand, in response to challenges. The work presented in this thesis, helps ATM operators better understand and increase visibility into the behaviour of their services and infrastructure, with the primary aim to inform decision-making to reduce service disruption. This is achieved by combining a container-based NFV framework with Software- Defined Networking (SDN). The application of SDN+NFV in this work allows lightweight, chain-able monitoring and anomaly detection functions to be deployed on-demand, and the appropriate (sub)set of network traffic routed through these virtual network functions to provide timely, context-specific information. This container-based function deployment architecture, allows for punctual in-network processing through the instantiation of custom functionality, at appropriate locations. When accidents do occur, such as the crash of a UAV, the lessons learnt should be integrated into future systems. For one such incident, the accident investigation identified a telemetry precursor an hour prior. The function deployment architecture allows operators to extend and adapt their network infrastructure, to incorporate the latest monitoring recommendations. Furthermore, this work has examined relationships in application-level information and network layer data representing individual examples of a wide range of generalisable cases including: between the cyber and physical components of surveillance data, the rate of change in telemetry to determine abnormal aircraft surface movements, and the emerging behaviour of network flooding. Each of these examples provide valuable context-specific benefits to operators and a generalised basis from which further tools can be developed to enhance their understanding of their networks

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    A Link-Layer Virtual Networking Solution for Cloud-Native Network Function Virtualisation Ecosystems: L2S-M

    Get PDF
    Microservices have become promising candidates for the deployment of network and vertical functions in the fifth generation of mobile networks. However, microservice platforms like Kubernetes use a flat networking approach towards the connectivity of virtualised workloads, which prevents the deployment of network functions on isolated network segments (for example, the components of an IP Telephony system or a content distribution network). This paper presents L2S-M, a solution that enables the connectivity of Kubernetes microservices over isolated link-layer virtual networks, regardless of the compute nodes where workloads are actually deployed. L2S-M uses software-defined networking (SDN) to fulfil this purpose. Furthermore, the L2S-M design is flexible to support the connectivity of Kubernetes workloads across different Kubernetes clusters. We validate the functional behaviour of our solution in a moderately complex Smart Campus scenario, where L2S-M is used to deploy a content distribution network, showing its potential for the deployment of network services in distributed and heterogeneous environments.This article has partially been supported by the H2020 FISHY Project (Grant agreement ID: 952644) and by the TRUE5G project (PID2019-108713RB681) funded by the Spanish National Research Agency (MCIN/AEI/10.13039/5011000110)

    LATEST ADVANCES ON SECURITY ARCHITECTURE FOR 5G TECHNOLOGY AND SERVICES

    Get PDF
    The roll out of the deployment of the 5G technology has been ongoing globally. The deployment of the technologies associated with 5G has seen mixed reaction as regards its prospects to improve communication services in all spares of life amid its security concerns. The security concerns of 5G network lies in its architecture and other technologies that optimize the performance of its architecture. There are many fractions of 5G security architecture in the literature, a holistic security architectural structure will go a long way in tackling the security challenges. In this paper, the review of the security challenges of the 5G technology based on its architecture is presented along with their proposed solutions. This review was carried out with some keywords relating to 5G securities and architecture; this was used to retrieve appropriate literature for fitness of purpose. The 5G security architectures are mojorly centered around the seven network security layers; thereby making each of the layers a source of security concern on the 5G network. Many of the 5G security challenges are related to authentication and authorization such as denial-of-service attacks, man in the middle attack and eavesdropping. Different methods both hardware (Unmanned Aerial Vehicles, field programmable logic arrays) and software (Artificial intelligence, Machine learning, Blockchain, Statistical Process Control) has been proposed for mitigating the threats. Other technologies applicable to 5G security concerns includes: Multi-radio access technology, smart-grid network and light fidelity. The implementation of these solutions should be reviewed on a timely basis because of the dynamic nature of threats which will greatly reduce the occurrence of security attacks on the 5G network
    corecore